AD7859 Analog Devices, AD7859 Datasheet - Page 6

no-image

AD7859

Manufacturer Part Number
AD7859
Description
3 V to 5 V Single Supply, 200 kSPS 8-Channel, 12-Bit, Parallel Sampling ADCs
Manufacturer
Analog Devices
Datasheet

Specifications of AD7859

Resolution (bits)
12bit
# Chan
8
Sample Rate
200kSPS
Interface
Byte,Par
Analog Input Type
SE-Bip,SE-Uni
Ain Range
(Vref) p-p,Uni (Vref)
Adc Architecture
SAR
Pkg Type
LCC,QFP

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD7859AP
Manufacturer:
VICOR
Quantity:
2
Part Number:
AD7859AP
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD7859APZ
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
AD7859APZ-REEL
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
AD7859AS
Manufacturer:
ADI
Quantity:
200
Part Number:
AD7859ASZ
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
AD7859ASZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD7859ASZ-REEL
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
AD7859BS
Manufacturer:
AD
Quantity:
1 831
Part Number:
AD7859BS
Manufacturer:
ADI
Quantity:
200
Part Number:
AD7859BSZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD7859LAS
Manufacturer:
ADI
Quantity:
586
Part Number:
AD7859LASZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
AD7859/AD7859L
TERMINOLOGY
Integral Nonlinearity
This is the maximum deviation from a straight line passing
through the endpoints of the ADC transfer function. The end-
points of the transfer function are zero scale, a point 1/2 LSB
below the first code transition, and full scale, a point 1/2 LSB
above the last code transition.
Differential Nonlinearity
This is the difference between the measured and the ideal 1 LSB
change between any two adjacent codes in the ADC.
Unipolar Offset Error
This is the deviation of the first code transition (00 . . . 000 to
00 . . . 001) from the ideal AIN(+) voltage (AIN(–) + 1/2 LSB)
when operating in the unipolar mode.
Positive Full-Scale Error
This applies to the unipolar and bipolar modes and is the devia-
tion of the last code transition from the ideal AIN(+) voltage
(AIN(–) + Full Scale – 1.5 LSB) after the offset error has been
adjusted out.
Negative Full-Scale Error
This applies to the bipolar mode only and is the deviation of the
first code transition (10 . . . 000 to 10 . . . 001) from the ideal
AIN(+) voltage (AIN(–) – V
Bipolar Zero Error
This is the deviation of the midscale transition (all 0s to all 1s)
from the ideal AIN(+) voltage (AIN(–) – 1/2 LSB).
Track/Hold Acquisition Time
The track/hold amplifier returns into track mode and the end of
conversion. Track/Hold acquisition time is the time required for
the output of the track/hold amplifier to reach its final value,
within 1/2 LSB, after the end of conversion.
Signal to (Noise + Distortion) Ratio
This is the measured ratio of signal to (noise + distortion) at the
output of the A/D converter. The signal is the rms amplitude of
the fundamental. Noise is the sum of all nonfundamental sig-
nals up to half the sampling frequency (f
ratio is dependent on the number of quantization levels in the
digitization process; the more levels, the smaller the quantiza-
tion noise. The theoretical signal to (noise + distortion) ratio for
an ideal N-bit converter with a sine wave input is given by:
Thus for a 12-bit converter, this is 74 dB.
Signal to (Noise + Distortion) = (6.02 N +1.76) dB
REF
/2 + 0.5 LSB).
S
/2), excluding dc. The
–6–
Total Harmonic Distortion
Total harmonic distortion (THD) is the ratio of the rms sum of
harmonics to the fundamental. For the AD7859/AD7859L, it is
defined as:
where V
V
sixth harmonics.
Peak Harmonic or Spurious Noise
Peak harmonic or spurious noise is defined as the ratio of the
rms value of the next largest component in the ADC output
spectrum (up to f
fundamental. Normally, the value of this specification is deter-
mined by the largest harmonic in the spectrum, but for parts
where the harmonics are buried in the noise floor, it will be a
noise peak.
Intermodulation Distortion
With inputs consisting of sine waves at two frequencies, fa and
fb, any active device with nonlinearities will create distortion
products at sum and difference frequencies of mfa
m, n = 0, 1, 2, 3, etc. Intermodulation distortion terms are
those for which neither m nor n are equal to zero. For example,
the second order terms include (fa + fb) and (fa – fb), while the
third order terms include (2fa + fb), (2fa – fb), (fa + 2fb) and
(fa – 2fb).
Testing is performed using the CCIF standard where two input
frequencies near the top end of the input bandwidth are used. In
this case, the second order terms are usually distanced in fre-
quency from the original sine waves while the third order terms
are usually at a frequency close to the input frequencies. As a
result, the second and third order terms are specified separately.
The calculation of the intermodulation distortion is as per the
THD specification where it is the ratio of the rms sum of the
individual distortion products to the rms amplitude of the sum
of the fundamentals expressed in dBs.
4
, V
THD (dB) 20 log
5
and V
1
is the rms amplitude of the fundamental and V
6
are the rms amplitudes of the second through the
S
/2 and excluding dc) to the rms value of the
(V
2
2
V
3
2
V
V
1
4
2
V
5
2
nfb where
V
6
2
REV. A
2
, V
)
3
,

Related parts for AD7859