AD7859 Analog Devices, AD7859 Datasheet - Page 8

no-image

AD7859

Manufacturer Part Number
AD7859
Description
3 V to 5 V Single Supply, 200 kSPS 8-Channel, 12-Bit, Parallel Sampling ADCs
Manufacturer
Analog Devices
Datasheet

Specifications of AD7859

Resolution (bits)
12bit
# Chan
8
Sample Rate
200kSPS
Interface
Byte,Par
Analog Input Type
SE-Bip,SE-Uni
Ain Range
(Vref) p-p,Uni (Vref)
Adc Architecture
SAR
Pkg Type
LCC,QFP

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD7859AP
Manufacturer:
VICOR
Quantity:
2
Part Number:
AD7859AP
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD7859APZ
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
AD7859APZ-REEL
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
AD7859AS
Manufacturer:
ADI
Quantity:
200
Part Number:
AD7859ASZ
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
AD7859ASZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD7859ASZ-REEL
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
AD7859BS
Manufacturer:
AD
Quantity:
1 831
Part Number:
AD7859BS
Manufacturer:
ADI
Quantity:
200
Part Number:
AD7859BSZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD7859LAS
Manufacturer:
ADI
Quantity:
586
Part Number:
AD7859LASZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
AD7859/AD7859L
AD7859/AD7859L ON-CHIP REGISTERS
The AD7859/AD7859L powers up with a set of default conditions. The only writing that is required is to select the channel configu-
ration. Without performing any other write operations, the AD7859/AD7859L still retains the flexibility for performing a full power-
down and a full self-calibration.
Extra features and flexibility such as performing different power-down options, different types of calibrations, including system cali-
bration, and software conversion start can be selected by writing to the part.
The AD7859/AD7859L contains a Control register, ADC output data register, Status register, Test register and 10 Cali-
bration registers. The control register is write-only, the ADC output data register and the status register are read-only, and the test
and calibration registers are both read/write registers. The test register is used for testing the part and should not be written to.
Addressing the On-Chip Registers
Writing
When writing to the AD7859/AD7859L, a 16-bit word of data must be transferred. The 16 bits of data is written as either a 16-bit
word, or as two 8-bit bytes, depending on the logic level at the W/B pin. When W/B is high, the 16 bits are transferred on DB0 to
DB15, where DB0 is the LSB and DB15 is the MSB of the write. When W/B is low, DB8/HBEN assumes its HBEN functionality
and data is transferred in two 8-bit bytes on pins DB0 to DB7, pin DB0 being the LSB of each transfer and pin DB7 being the MSB.
When writing to the AD7859/AD7859L in byte mode, the low byte must be written first followed by the high byte. The two MSBs
of the complete 16-bit word, ADDR1 and ADDR0, are decoded to determine which register is addressed, and the 14 LSBs are writ-
ten to the addressed register. Table I shows the decoding of the address bits, while Figure 2 shows the overall write register hierarchy.
ADDR1
0
0
1
1
Reading
To read from the various registers the user must first write to Bits 6 and 7 in the Control Register, RDSLT0 and RDSLT1. These
bits are decoded to determine which register is addressed during a read operation. Table II shows the decoding of the read address
bits while Figure 3 shows the overall read register hierarchy. The power-up status of these bits is 00 so that the default read will be
from the ADC output data register. As with writing to the AD7859/AD7859L either word or byte mode can be used. When reading
from the calibration registers in byte mode, the low byte must be read first.
Once the read selection bits are set in the control register all subsequent read operations that follow are from the selected register un-
til the read selection bits are changed in the control register.
RDSLT1
0
0
1
1
Figure 2. Write Register Hierarchy/Address Decoding
CALSLT1, CALSLT0
DECODE
RDSLT0
0
1
0
1
ADDR0
0
1
0
1
OFFSET (1)
GAIN (1)
00
REGISTER
DAC (8)
01
Comment
This combination does not address any register.
This combination addresses the TEST REGISTER. The 14 LSBs of data are written to the test register.
This combination addresses the CALIBRATION REGISTERS. The 14 LSBs of data are written to the
selected calibration register.
This combination addresses the CONTROL REGISTER. The 14 LSBs of data are written to the control
register.
Comment
All successive read operations are from the ADC OUTPUT DATA REGISTER. This is the default power-
up setting. There is always four leading zeros when reading from the ADC output data register.
All successive read operations are from the TEST REGISTER.
All successive read operations are from the CALIBRATION REGISTERS.
All successive read operations are from the STATUS REGISTER.
TEST
OFFSET (1)
GAIN (1)
01
ADDR1, ADDR0
CALIBRATION
REGISTERS
DECODE
10
OFFSET (1)
10
Table II. Read Register Addressing
Table I. Write Register Addressing
REGISTER
CONTROL
GAIN (1)
11
11
–8–
Figure 3. Read Register Hierarchy/Address Decoding
CALSLT1, CALSLT0
DATA REGISTER
ADC OUTPUT
DECODE
00
OFFSET (1)
GAIN (1)
00
REGISTER
DAC (8)
01
TEST
OFFSET (1)
GAIN (1)
01
RDSLT1, RDSLT0
CALIBRATION
REGISTERS
DECODE
10
OFFSET (1)
10
REGISTER
STATUS
GAIN (1)
11
11
REV. A

Related parts for AD7859