AD5744R Analog Devices, AD5744R Datasheet - Page 27

no-image

AD5744R

Manufacturer Part Number
AD5744R
Description
Complete Quad, 14-Bit, High Accuracy, Serial Input, Bipolar Voltage Output D/A Converter
Manufacturer
Analog Devices
Datasheet

Specifications of AD5744R

Resolution (bits)
14bit
Dac Update Rate
1MSPS
Dac Settling Time
8µs
Max Pos Supply (v)
+16.5V
Single-supply
No
Dac Type
Voltage Out
Dac Input Format
Ser,SPI

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD5744RCSUZ
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
AD5744RCSUZ-REEL7
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Data Sheet
APPLICATIONS INFORMATION
TYPICAL OPERATING CIRCUIT
Figure 43 shows the typical operating circuit for the AD5744R.
The only external components needed for this precision 14-bit
DAC are decoupling capacitors on the supply pins and reference
inputs and an optional short-circuit current setting resistor.
Because the AD5744R incorporates a voltage reference and
reference buffers, it eliminates the need for an external bipolar
reference and associated buffers, resulting in an overall savings
in both cost and board space.
In Figure 43, AV
to −15 V; but AV
±11.4 V to ±16.5 V. In Figure 43, AGNDx is connected to
REFGND.
Precision Voltage Reference Selection
To achieve the optimum performance from the AD5744R over
its full operating temperature range, an external voltage reference
must be used. Care must be taken in the selection of a precision
voltage reference. The AD5744R has two reference inputs, REFAB
and REFCD. The voltages applied to the reference inputs are used
to provide a buffered positive and negative reference for the DAC
cores. Therefore, any error in the voltage reference is reflected
in the outputs of the device.
There are four possible sources of error to consider when choosing
a voltage reference for high accuracy applications: initial accuracy,
temperature coefficient of the output voltage, long term drift,
and output voltage noise.
Table 18. Some Precision References Recommended for Use with the AD5744R
Part No.
ADR435
ADR425
ADR02
ADR395
AD586
Initial Accuracy
(mV Maximum)
±6
±6
±5
±6
±2.5
DD
DD
is connected to +15 V, and AV
and AV
SS
can operate with supplies from
Long-Term Drift
(ppm Typical)
30
50
50
50
15
SS
is connected
Rev. E | Page 27 of 32
Temperature Drift
(ppm/°C Maximum)
3
3
3
25
10
Initial accuracy error on the output voltage of an external refer-
ence could lead to a full-scale error in the DAC. Therefore, to
minimize these errors, a reference with low initial accuracy
error specification is preferred. Choosing a reference with an
output trim adjustment, such as the ADR425, allows a system
designer to trim system errors out by setting the reference
voltage to a voltage other than the nominal. The trim adjustment
can also be used at temperature to trim out any error.
Long term drift is a measure of how much the reference output
voltage drifts over time. A reference with a tight long-term drift
specification ensures that the overall solution remains relatively
stable over its entire lifetime.
The temperature coefficient of a reference output voltage affects
INL, DNL, and TUE. A reference with a tight temperature coef-
ficient specification should be chosen to reduce the dependence
of the DAC output voltage on ambient conditions.
In high accuracy applications, which have a relatively low noise
budget, reference output voltage noise must be considered. It is
important to choose a reference with as low an output noise
voltage as practical for the system resolution that is required.
Precision voltage references, such as the
produce low output noise in the 0.1 Hz to 10 Hz region. However,
as the circuit bandwidth increases, filtering the output of the
reference may be required to minimize the output noise.
0.1 Hz to 10 Hz Noise
(μV p-p Typical)
3.5
3.4
10
5
4
ADR435
(XFET® design),
AD5744R

Related parts for AD5744R