IDT72V3673L10PF IDT, Integrated Device Technology Inc, IDT72V3673L10PF Datasheet - Page 10

no-image

IDT72V3673L10PF

Manufacturer Part Number
IDT72V3673L10PF
Description
IC SYNCFIFO 8192X36 10NS 128TQFP
Manufacturer
IDT, Integrated Device Technology Inc
Series
72Vr
Datasheet

Specifications of IDT72V3673L10PF

Function
Asynchronous, Synchronous
Memory Size
288K (8K x 36)
Data Rate
100MHz
Access Time
10ns
Voltage - Supply
3.15 V ~ 3.45 V
Operating Temperature
0°C ~ 70°C
Mounting Type
Surface Mount
Package / Case
128-TQFP, 128-VQFP
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Other names
72V3673L10PF

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
IDT72V3673L10PF
Manufacturer:
IDT, Integrated Device Technology Inc
Quantity:
10 000
Part Number:
IDT72V3673L10PF8
Manufacturer:
IDT, Integrated Device Technology Inc
Quantity:
10 000
SIGNAL DESCRIPTION
RESET (RS1, RS2)
pulse to RS1 and RS2 simultaneously. Afterwards, the FIFO memory of the
IDT72V3653/72V3663/72V3673 undergoes a complete reset by taking its
Reset (RS1 and RS2) input LOW for at least four Port A clock (CLKA) and four
Port B clock (CLKB) LOW-to-HIGH transitions. The Reset inputs can switch
asynchronously to the clocks. A Reset initializes the internal read and write
pointers and forces the Full/Input Ready flag (FF/IR) LOW, the Empty/Output
Ready flag (EF/OR) LOW, the Almost-Empty flag (AE) LOW, and the Almost-
Full flag (AF) HIGH. A Reset (RS1) also forces the Mailbox flag (MBF1) of
the parallel mailbox register HIGH, and at the same time the RS2 and MBF2
operate likewise. After a Reset, the FIFO’s Full/Input Ready flag is set HIGH
after two write clock cycles to begin normal operation.
value of the Big-Endian (BE) input for determining the order by which bytes are
transferred through Port B.
values of the Flag Select (FS0, FS1 and FS2) inputs for choosing the Almost-
Full and Almost-Empty offset programming method ( for details see Table 1, Flag
Programming, and Almost-Empty and Almost-Full flag offset programming
section). The relevant Reset timing diagram can be found in Figure 3.
PARTIAL RESET (PRS)
limited reset by taking its Partial Reset (PRS) input LOW for at least four Port
A clock (CLKA) and four Port B clock (CLKB) LOW-to-HIGH transitions. The
RTM pin must be LOW during the time of Partial Reset. The Partial Reset input
can switch asynchronously to the clocks. A Partial Reset initializes the internal
read and write pointers and forces the Full/Input Ready flag (FF/IR) LOW, the
Empty/Output Ready flag (EF/OR) LOW, the Almost-Empty flag (AE) LOW,
and the Almost-Full flag (AF) HIGH. A Partial Reset also forces the Mailbox
flag (MBF1, MBF2) of the parallel mailbox register HIGH. After a Partial Reset,
the FIFO’s Full/Input Ready flag is set HIGH after two Write Clock cycles to begin
normal operation. See Figure 4, Partial Reset (IDT Standard and FWFT
Modes) for the relevant timing diagram.
mode (FWFT or IDT Standard mode) are currently selected at the time a Partial
Reset is initiated, those settings will be remain unchanged upon completion of
the reset operation. A Partial Reset may be useful in the case where
reprogramming a FIFO following a Reset would be inconvenient.
RETRANSMIT (RT)
The FIFO memory of these devices undergoes a Retransmit by taking its
associated Retransmit (RT) input LOW for at least four Port A Clock (CLKA)
and four Port B Clock (CLKB) LOW-to-HIGH transitions. The Retransmit
initializes the read pointer of FIFO to the first memory location.
input is muxed with the PRS input, the state of the RTM pin determining whether
this pin performs a Retransmit or a Partial Reset. See Figure 19 for Retransmit
(Standard IDT mode) and figure 20 for Retransmit (FWFT mode) timing
diagrams.
NOTE:
1. Either a HIGH or LOW can be applied to a “don’t care” input with no change to the logical operation of the FIFO. Nevertheless, inputs that are temporarily “don’t care” (along with unused
IDT72V3653/72V3663/72V3673 3.3V CMOS SyncFIFO
BUS-MATCHING 2,048 x 36, 4,096 x 36, and 8,192 x 36
inputs) must not be left open, rather they must be either HIGH or LOW.
The RTM pin must be HIGH during the time of Retransmit. Note that the RT
After power up, a Reset operation must be performed by providing a LOW
A LOW-to-HIGH transition on the FlFO Reset (RS1) input latches the
A LOW-to-HIGH transition on the FlFO Reset (RS1) input also latches the
The FIFO memory of the IDT72V3653/72V3663/72V3673 undergoes a
Whatever flag offsets, programming method (parallel or serial), and timing
TM
WITH
10
BIG-ENDIAN/FIRST WORD FALL THROUGH (BE/FWFT)
— ENDIAN SELECTION
active, permitting a choice of Big- or Little-Endian byte arrangement for data read
from Port B. This selection determines the order by which bytes (or words) of
data are transferred through this port. For the following illustrations, assume
that a byte (or word) bus size has been selected for Port B. (Note that when
Port B is configured for a long word size, the Big-Endian function has no
application and the BE input is a “don’t care”
LOW to HIGH will select a Big-Endian arrangement. In this case, the most
significant byte (word) of the long word written to Port A will be read from Port
B first; the least significant byte (word) of the long word written to Port A will be
read from Port B last.
LOW to HIGH will select a Little-Endian arrangement. In this case, the least
significant byte (word) of the long word written to Port A will be read from Port
B first; the most significant byte (word) of the long word written to Port A will be
read from Port B last. Refer to Figure 2 for an illustration of the BE function. See
Figure 3 (Reset) for an Endian select timing diagram.
— TIMING MODE SELECTION
two possible timing modes: IDT Standard mode or First Word Fall Through
(FWFT) mode. Once the Reset (RS1) input is HIGH, a HIGH on the BE/FWFT
input during the next LOW-to-HIGH transition of CLKA and CLKB will select
IDT Standard mode. This mode uses the Empty Flag function (EF) to indicate
whether or not there are any words present in the FIFO memory. It uses the
Full Flag function (FF) to indicate whether or not the FIFO memory has any
free space for writing. In IDT Standard mode, every word read from the FIFO,
including the first, must be requested using a formal read operation.
during the next LOW-to-HIGH transition of CLKA and CLKB will select FWFT
mode. This mode uses the Output Ready function (OR) to indicate whether or
not there is valid data at the data outputs (B0-B35). It also uses the Input Ready
function (IR) to indicate whether or not the FIFO memory has any free space
for writing. In the FWFT mode, the first word written to an empty FIFO goes
directly to data outputs, no read request necessary. Subsequent words must
be accessed by performing a formal read operation.
desired timing mode must remain static throughout FIFO operation. Refer to
Figure 3 (Reset) for a First Word Fall Through select timing diagram.
PROGRAMMING THE ALMOST-EMPTY AND ALMOST-FULL FLAGS
offset values for the Almost-Empty and Almost-Full flags. The Almost-Empty flag
(AE) Offset register is labeled X and Almost-Full flag (AF) Offset register is
labeled Y. The offset registers can be loaded with preset values during the reset
of the FIFO, programmed in parallel using the FIFO’s Port A data inputs, or
programmed in serial using the Serial Data (SD) input (see Table 1). FS2 FS0/
SD, and FS1/SEN function the same way in both IDT Standard and FWFT
modes.
After Reset, the FWFT select function is active, permitting a choice between
Following Reset, the level applied to the BE/FWFT input to choose the
Two registers in the IDT72V3653/72V3663/72V3673 are used to hold the
This is a dual purpose pin. At the time of Reset, the BE select function is
A HIGH on the BE/FWFT input when the Reset (RS1) input goes from
A LOW on the BE/FWFT input when the Reset (RS1) input goes from
Once the Reset (RS1) input is HIGH, a LOW on the BE/FWFT input
COMMERCIAL TEMPERATURE RANGE
1
.)

Related parts for IDT72V3673L10PF