AD573 Analog Devices, AD573 Datasheet - Page 8

no-image

AD573

Manufacturer Part Number
AD573
Description
10-Bit A/D Converter
Manufacturer
Analog Devices
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD573
Manufacturer:
TI
Quantity:
9
Part Number:
AD5732RBREZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD5734AREZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD5734RBREZ
Manufacturer:
Microchip
Quantity:
1 084
Part Number:
AD5734RBREZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD5737ACPZ
Manufacturer:
AD
Quantity:
101
Part Number:
AD5737ACPZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD573JD
Manufacturer:
AD
Quantity:
60
Part Number:
AD573JD
Manufacturer:
AD
Quantity:
60
Part Number:
AD573JN
Manufacturer:
AVAGO
Quantity:
780
Part Number:
AD573JN
Manufacturer:
ADI
Quantity:
427
Part Number:
AD573JN
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD573JP
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
AD573JPZ
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
AD573SD
Manufacturer:
AD
Quantity:
650
AD573
It is also possible to write a faster-executing assembly-language
routine to control the AD573. Such a routine will require a de-
lay between starting and reading the converter. This can be eas-
ily implemented by calling the Apple’s WAIT subroutine (which
resides at location $FCA8) after loading the accumulator with a
number greater than or equal to two.
8085-Series Microprocessor Interface
The AD573 can also be used with 8085-series microprocessors.
These processors use separate control signals for RD and WR,
as opposed to the single R/W control signal used in the 6800/
6500 series processors.
There are two constraints related to operation of the AD573
with 8085-series processors. The first problem is the width of
the CONVERT pulse. The circuit shown in Figure 17 (essen-
tially the same as that shown in Figure 13) will produce a wide
enough CONVERT pulse when the 8085 is running at 5 MHz.
For 8085 systems running at slower clock rates (3 MHz), the
flip-flop-based circuit can be eliminated since the WR pulse will
be approximately 500 ns wide.
The other consideration is the access time of the AD573’s three-
state output data buffers, which is 250 ns maximum. It may be
necessary to insert wait states during RD operations from the
AD573. This will not be a problem in systems using memories
with comparable access times, since wait states will have already
been provided in the basic system design.
The following assembly-language subroutine can be used to
control an AD573 residing at memory locations 3000
3001
DE register pair.
ADC: LXI H, 3000 ; LOAD HL WITH AD573 ADDRESS
LOOP: DCR B
H
Figure 17. AD573–8085A Interface Connections
. The 10 bits of data are returned (left-justified) in the
MOV M, A
MVI B, 06
JNZ LOOP
MOV A, M
ANI C0
MOV E, A
INR L
MOV D, M
RET
; START CONVERSION
; LOAD DELAY PERIOD
; DELAY LOOP
;
; READ LOW BYTE
; MASK LOWER 6 BITS
; STORE CLEAN LOW BYTE IN E
; LOAD HIGH BYTE ADDRESS
; MOVE HIGH BYTE TO D
; EXIT
H
and
–8–
20-Pin Ceramic DIP Package (“D”)
20-Pin Plastic DIP Package (“N”)
Dimensions shown in inches and (mm).
OUTLINE DIMENSIONS
P-20A PLCC
REV. A

Related parts for AD573