DSPIC33FJ64MC204-I/ML Microchip Technology, DSPIC33FJ64MC204-I/ML Datasheet - Page 72

IC DSPIC MCU/DSP 64K 44-QFN

DSPIC33FJ64MC204-I/ML

Manufacturer Part Number
DSPIC33FJ64MC204-I/ML
Description
IC DSPIC MCU/DSP 64K 44-QFN
Manufacturer
Microchip Technology
Series
dsPIC™ 33Fr

Specifications of DSPIC33FJ64MC204-I/ML

Program Memory Type
FLASH
Program Memory Size
64KB (64K x 8)
Package / Case
44-QFN
Core Processor
dsPIC
Core Size
16-Bit
Speed
40 MIPs
Connectivity
I²C, IrDA, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, DMA, Motor Control PWM, QEI, POR, PWM, WDT
Number Of I /o
35
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
3 V ~ 3.6 V
Data Converters
A/D 9x10b/12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Product
DSCs
Data Bus Width
16 bit
Processor Series
DSPIC33F
Core
dsPIC
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
35
Data Ram Size
8 KB
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, DM240001, DV164033
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
AC164336 - MODULE SOCKET FOR PM3 28/44QFNDM240001 - BOARD DEMO PIC24/DSPIC33/PIC32
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
4.6
The
dsPIC33FJ64MCX02/X04
dsPIC33FJ128MCX02/X04
24-bit-wide program space and a 16-bit-wide data
space. The architecture is also a modified Harvard
scheme, meaning that data can also be present in the
program space. To use this data successfully, it must
be accessed in a way that preserves the alignment of
information in both spaces.
Aside
dsPIC33FJ32MC302/304,
and dsPIC33FJ128MCX02/X04 architecture provides
two methods by which program space can be
accessed during operation:
• Using table instructions to access individual bytes
• Remapping a portion of the program space into
Table instructions allow an application to read or write
to small areas of the program memory. This capability
makes the method ideal for accessing data tables that
need to be updated periodically. It also allows access
to all bytes of the program word. The remapping
method allows an application to access a large block of
data on a read-only basis, which is ideal for look-ups
TABLE 4-42:
DS70291D-page 72
Instruction Access
(Code Execution)
TBLRD/TBLWT
(Byte/Word Read/Write)
Program Space Visibility
(Block Remap/Read)
Note 1:
or words anywhere in the program space
the data space (Program Space Visibility)
Access Type
Interfacing Program and Data
Memory Spaces
from
Data EA<15> is always ‘1’ in this case, but is not used in calculating the program space address. Bit 15 of
the address is PSVPAG<0>.
PROGRAM SPACE ADDRESS CONSTRUCTION
normal
dsPIC33FJ32MC302/304,
User
User
Configuration
User
dsPIC33FJ64MCX02/X04
architecture
Access
execution,
Space
uses
and
Preliminary
the
<23>
a
0
0
0
TBLPAG<7:0>
TBLPAG<7:0>
0xxx xxxx
1xxx xxxx
0xx
from a large table of static data. The application can
only access the least significant word of the program
word.
4.6.1
Since the address ranges for the data and program
spaces are 16 and 24 bits, respectively, a method is
needed to create a 23-bit or 24-bit program address
from 16-bit data registers. The solution depends on the
interface method to be used.
For table operations, the 8-bit Table Page register
(TBLPAG) is used to define a 32K word region within
the program space. This is concatenated with a 16-bit
EA to arrive at a full 24-bit program space address. In
this format, the Most Significant bit of TBLPAG is used
to determine if the operation occurs in the user memory
(TBLPAG<7> = 0) or the configuration memory
(TBLPAG<7> = 1).
For remapping operations, the 8-bit Program Space
Visibility register (PSVPAG) is used to define a
16K word page in the program space. When the Most
Significant bit of the EA is ‘1’, PSVPAG is concatenated
with the lower 15 bits of the EA to form a 23-bit program
space address. Unlike table operations, this limits
remapping operations strictly to the user memory area.
Table 4-42 and Figure 4-9 show how the program EA is
created for table operations and remapping accesses
from the data EA. Here, P<23:0> refers to a program
space word, and D<15:0> refers to a data space word.
<22:16>
xxxx xxxx
PSVPAG<7:0>
xxxx
Program Space Address
ADDRESSING PROGRAM SPACE
xxxx
PC<22:1>
xxxx xxxx xxxx xxxx
xxxx xxxx xxxx xxxx
<15>
xxxx
© 2009 Microchip Technology Inc.
xxx xxxx xxxx xxxx
Data EA<15:0>
Data EA<15:0>
xxxx xxx0
<14:1>
Data EA<14:0>
(1)
<0>
0

Related parts for DSPIC33FJ64MC204-I/ML