MC908GR60ACFAE Freescale Semiconductor, MC908GR60ACFAE Datasheet - Page 231

IC MCU 60K FLASH 8MHZ 48-LQFP

MC908GR60ACFAE

Manufacturer Part Number
MC908GR60ACFAE
Description
IC MCU 60K FLASH 8MHZ 48-LQFP
Manufacturer
Freescale Semiconductor
Series
HC08r
Datasheet

Specifications of MC908GR60ACFAE

Core Processor
HC08
Core Size
8-Bit
Speed
8MHz
Connectivity
SCI, SPI
Peripherals
LVD, POR, PWM
Number Of I /o
37
Program Memory Size
60KB (60K x 8)
Program Memory Type
FLASH
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
3 V ~ 5.5 V
Data Converters
A/D 24x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
48-LQFP
Controller Family/series
HC08
No. Of I/o's
37
Ram Memory Size
2KB
Cpu Speed
8MHz
No. Of Timers
2
Embedded Interface Type
SCI, SPI
Rohs Compliant
Yes
Processor Series
HC08GR
Core
HC08
Data Bus Width
8 bit
Data Ram Size
2 KB
Interface Type
ESCI, SPI
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
53
Number Of Timers
8
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Development Tools By Supplier
FSICEBASE, DEMO908GZ60E, M68CBL05CE, M68EML08GPGTE
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 24 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC908GR60ACFAE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC908GR60ACFAE
Manufacturer:
FREESCALE
Quantity:
20 000
Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x:
17.3.4.2 Buffered PWM Signal Generation
Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the T1CH0
pin. The TIM1 channel registers of the linked pair alternately control the pulse width of the output.
Setting the MS0B bit in TIM1 channel 0 status and control register (T1SC0) links channel 0 and channel 1.
The TIM1 channel 0 registers initially control the pulse width on the T1CH0 pin. Writing to the TIM1
channel 1 registers enables the TIM1 channel 1 registers to synchronously control the pulse width at the
beginning of the next PWM period. At each subsequent overflow, the TIM1 channel registers (0 or 1) that
control the pulse width are the ones written to last. T1SC0 controls and monitors the buffered PWM
function, and TIM1 channel 1 status and control register (T1SC1) is unused. While the MS0B bit is set,
the channel 1 pin, T1CH1, is available as a general-purpose I/O pin.
17.3.4.3 PWM Initialization
To ensure correct operation when generating unbuffered or buffered PWM signals, use the following
initialization procedure:
Freescale Semiconductor
1. In the TIM1 status and control register (T1SC):
2. In the TIM1 counter modulo registers (T1MODH:T1MODL), write the value for the required PWM
3. In the TIM1 channel x registers (T1CHxH:T1CHxL), write the value for the required pulse width.
When changing to a shorter pulse width, enable channel x output compare interrupts and write the
new value in the output compare interrupt routine. The output compare interrupt occurs at the end
of the current pulse. The interrupt routine has until the end of the PWM period to write the new
value.
When changing to a longer pulse width, enable TIM1 overflow interrupts and write the new value
in the TIM1 overflow interrupt routine. The TIM1 overflow interrupt occurs at the end of the current
PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current
pulse) could cause two output compares to occur in the same PWM period.
period.
a. Stop the TIM1 counter by setting the TIM1 stop bit, TSTOP.
b. Reset the TIM1 counter and prescaler by setting the TIM1 reset bit, TRST.
In PWM signal generation, do not program the PWM channel to toggle on
output compare. Toggling on output compare prevents reliable 0% duty
cycle generation and removes the ability of the channel to self-correct in the
event of software error or noise. Toggling on output compare also can
cause incorrect PWM signal generation when changing the PWM pulse
width to a new, much larger value.
In buffered PWM signal generation, do not write new pulse width values to
the currently active channel registers. User software should track the
currently active channel to prevent writing a new value to the active
channel. Writing to the active channel registers is the same as generating
unbuffered PWM signals.
MC68HC908GR60A • MC68HC908GR48A • MC68HC908GR32A Data Sheet, Rev. 5
NOTE
NOTE
Functional Description
231

Related parts for MC908GR60ACFAE