MC68HC908JL8CP Freescale Semiconductor, MC68HC908JL8CP Datasheet - Page 133

no-image

MC68HC908JL8CP

Manufacturer Part Number
MC68HC908JL8CP
Description
IC MCU 8K FLASH 8MHZ 28-DIP
Manufacturer
Freescale Semiconductor
Series
HC08r
Datasheet

Specifications of MC68HC908JL8CP

Core Processor
HC08
Core Size
8-Bit
Speed
8MHz
Connectivity
SCI
Peripherals
LED, LVD, POR, PWM
Number Of I /o
23
Program Memory Size
8KB (8K x 8)
Program Memory Type
FLASH
Ram Size
256 x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 13x8b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-DIP (0.600", 15.24mm)
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Eeprom Size
-

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC68HC908JL8CP
Manufacturer:
FREESCALE Semiconductor
Quantity:
388
Part Number:
MC68HC908JL8CP
Manufacturer:
FRE/MOT
Quantity:
20 000
9.5 Low-Power Modes
The WAIT and STOP instructions put the MCU in low power- consumption standby modes.
9.5.1 Wait Mode
The SCI module remains active after the execution of a WAIT instruction. In wait mode, the SCI module
registers are not accessible by the CPU. Any enabled CPU interrupt request from the SCI module can
bring the MCU out of wait mode.
If SCI module functions are not required during wait mode, reduce power consumption by disabling the
module before executing the WAIT instruction.
Refer to
9.5.2 Stop Mode
The SCI module is inactive after the execution of a STOP instruction. The STOP instruction does not
affect SCI register states. SCI module operation resumes after an external interrupt.
Because the internal clock is inactive during stop mode, entering stop mode during an SCI transmission
or reception results in invalid data.
Refer to
9.6 SCI During Break Module Interrupts
The system integration module (SIM) controls whether status bits in other modules can be cleared during
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status
bits during the break state.
To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status
bit is cleared during the break state, it remains cleared when the MCU exits the break state.
To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its
default state), software can read and write I/O registers during the break state without affecting status bits.
Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit
before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the
break, doing the second step clears the status bit.
9.7 I/O Signals
The two SCI I/O pins are:
9.7.1 TxD (Transmit Data)
The PTD6/TxD pin is the serial data output from the SCI transmitter.
9.7.2 RxD (Receive Data)
The PTD7/RxD pin is the serial data input to the SCI receiver.
Freescale Semiconductor
PTD6/TxD — Transmit data
PTD7/RxD — Receive data
5.6 Low-Power Modes
5.6 Low-Power Modes
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1
for information on exiting wait mode.
for information on exiting stop mode.
Low-Power Modes
133

Related parts for MC68HC908JL8CP