EP1AGX20CF484C6N Altera, EP1AGX20CF484C6N Datasheet - Page 56

IC ARRIA GX FPGA 20K 484FBGA

EP1AGX20CF484C6N

Manufacturer Part Number
EP1AGX20CF484C6N
Description
IC ARRIA GX FPGA 20K 484FBGA
Manufacturer
Altera
Series
Arria GXr
Datasheet

Specifications of EP1AGX20CF484C6N

Number Of Logic Elements/cells
21580
Number Of Labs/clbs
1079
Total Ram Bits
1229184
Number Of I /o
230
Voltage - Supply
1.15 V ~ 1.25 V
Mounting Type
Surface Mount
Operating Temperature
0°C ~ 85°C
Package / Case
484-FBGA
Family Name
Arria™ GX
Number Of Logic Blocks/elements
21580
# I/os (max)
230
Process Technology
CMOS
Operating Supply Voltage (typ)
1.2V
Logic Cells
21580
Ram Bits
1229184
Operating Supply Voltage (min)
1.15V
Operating Supply Voltage (max)
1.25V
Operating Temp Range
0C to 85C
Operating Temperature Classification
Commercial
Mounting
Surface Mount
Pin Count
484
Package Type
FC-FBGA
No. Of Macrocells
21580
Family Type
Arria GX
No. Of I/o's
230
Operating Frequency Max
622.08MHz
Operating Temperature Range
0°C To +85°C
Logic Case Style
BGA
No. Of Pins
484
Rohs Compliant
Yes
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Number Of Gates
-
Lead Free Status / Rohs Status
Compliant
Other names
544-2395

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
EP1AGX20CF484C6N
Manufacturer:
ALTERA
Quantity:
672
Part Number:
EP1AGX20CF484C6N
Manufacturer:
Altera
Quantity:
10 000
Part Number:
EP1AGX20CF484C6N
Manufacturer:
ALTERA
Quantity:
8 000
Part Number:
EP1AGX20CF484C6N
Manufacturer:
ALTERA
0
Part Number:
EP1AGX20CF484C6N
Manufacturer:
ALTERA
Quantity:
40
2–50
Figure 2–42. M512 RAM Block Control Signals
Arria GX Device Handbook, Volume 1
Dedicated
Row LAB
Clocks
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
When configured as RAM or ROM, you can use an initialization file to pre-load the
memory contents.
M512 RAM blocks can have different clocks on its inputs and outputs. The wren,
datain, and write address registers are all clocked together from one of the two
clocks feeding the block. The read address, rden, and output registers can be clocked
by either of the two clocks driving the block, allowing the RAM block to operate in
read and write or input and output clock modes. Only the output register can be
bypassed. The six labclk signals or local interconnect can drive the inclock,
outclock, wren, rden, and outclr signals. Because of the advanced interconnect
between the LAB and M512 RAM blocks, ALMs can also control the wren and rden
signals and the RAM clock, clock enable, and asynchronous clear signals.
shows the M512 RAM block control signal generation logic.
The RAM blocks in Arria GX devices have local interconnects to allow ALMs and
interconnects to drive into RAM blocks. The M512 RAM block local interconnect is
driven by the R4, C4, and direct link interconnects from adjacent LABs. The M512
RAM blocks can communicate with LABs on either the left or right side through these
row interconnects or with LAB columns on the left or right side with the column
interconnects. The M512 RAM block has up to 16 direct link input connections from
the left adjacent LABs and another 16 from the right adjacent LAB. M512 RAM
outputs can also connect to left and right LABs through direct link interconnect. The
M512 RAM block has equal opportunity for access and performance to and from
LABs on either its left or right side.
array interface.
6
inclock
inclocken
Figure 2–43
outclock
outclocken
shows the M512 RAM block to logic
rden
© December 2009 Altera Corporation
Chapter 2: Arria GX Architecture
wren
outclr
TriMatrix Memory
Figure 2–42

Related parts for EP1AGX20CF484C6N