LFXP3E-5TN100C Lattice, LFXP3E-5TN100C Datasheet

no-image

LFXP3E-5TN100C

Manufacturer Part Number
LFXP3E-5TN100C
Description
IC FPGA 3.1KLUTS 62I/O 100-TQFP
Manufacturer
Lattice
Datasheet

Specifications of LFXP3E-5TN100C

Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LFXP3E-5TN100C
Manufacturer:
Lattice Semiconductor Corporation
Quantity:
10 000
LatticeXP Family Handbook
HB1001 Version 03.4, September 2010

Related parts for LFXP3E-5TN100C

LFXP3E-5TN100C Summary of contents

Page 1

... LatticeXP Family Handbook HB1001 Version 03.4, September 2010 ...

Page 2

... Recommended Operating Conditions...................................................................................................... 3-7 © 2010 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. ...

Page 3

... Lead-free Packaging ................................................................................................................................. 5-8 Supplemental Information For Further Information ...................................................................................................................................... 6-1 LatticeXP Family Data Sheet Revision History Revision History ................................................................................................................................................. 7-1 Section II. LatticeXP Family Technical Notes LatticeECP/EC and LatticeXP sysIO Usage Guide Introduction ........................................................................................................................................................ 8-1 sysIO Buffer Overview ....................................................................................................................................... 8-1 Supported sysIO Standards ............................................................................................................................... 8-1 sysIO Banking Scheme...................................................................................................................................... 8 ...

Page 4

... Appendix B. sysIO Attributes Using Preference Editor User Interface............................................................. 8-22 Appendix C. sysIO Attributes Using Preference File (ASCII File) .................................................................... 8-23 IOBUF ..................................................................................................................................................... 8-23 LOCATE.................................................................................................................................................. 8-23 USE DIN CELL........................................................................................................................................ 8-24 USE DOUT CELL.................................................................................................................................... 8-24 PGROUP VREF ...................................................................................................................................... 8-24 V )................................................................................................... 8-3 REF1, REF2 ® ® and Precision RTL Synthesis ........................................................ 8-15 3 Table of Contents LatticeXP Family Handbook ...

Page 5

... Appendix C. VHDL Example for DDR Input and Output Modules.................................................................. 10-24 Appendix D. Generic (Non-Memory) High-Speed DDR Interface .................................................................. 10-29 VHDL Implementation ........................................................................................................................... 10-29 Verilog Example .................................................................................................................................... 10-31 Preference File...................................................................................................................................... 10-32 Appendix E. List of Compatible DDR SDRAM ............................................................................................... 10-33 Appendix F. DDR400 Interface using the LatticeEC Evaluation Board.......................................................... 10-36 LatticeXP Family Handbook 4 Table of Contents ...

Page 6

... MULTICYCLE ....................................................................................................................................... 11-20 PERIOD ................................................................................................................................................ 11-20 PROHIBIT ............................................................................................................................................. 11-20 CLOCK_TO_OUT ................................................................................................................................. 11-20 INPUT_SETUP ..................................................................................................................................... 11-21 PLL_PHASE_BACK.............................................................................................................................. 11-21 Power Estimation and Management for LatticeECP/EC and LatticeXP Devices Introduction ...................................................................................................................................................... 12-1 Power Supply Sequencing and Hot Socketing................................................................................................. 12-1 Power Calculator Hardware Assumptions........................................................................................................ 12-1 Power Calculator.............................................................................................................................................. 12-1 Power Calculator Equations.................................................................................................................... 12-2 Starting the Power Calculator ...

Page 7

... Core Generator .............................................................................................................................. 14-2 ispTRACY Core Linker..................................................................................................................................... 14-4 ispTRACY ispLA Program................................................................................................................................ 14-6 Conclusion ....................................................................................................................................................... 14-9 References....................................................................................................................................................... 14-9 Technical Support Assistance.......................................................................................................................... 14-9 HDL Synthesis Coding Guidelines for Lattice Semiconductor FPGAs Introduction ...................................................................................................................................................... 15-1 General Coding Styles for FPGA ..................................................................................................................... 15-1 LatticeXP Family Handbook 6 Table of Contents ...

Page 8

... Coding Styles for FSM ............................................................................................................................ 15-5 Using Pipelines in the Designs................................................................................................................ 15-6 Comparing IF statement and CASE statement ....................................................................................... 15-7 Avoiding Non-intentional Latches............................................................................................................ 15-8 HDL Design with Lattice Semiconductor FPGA Devices ................................................................................. 15-8 Lattice Semiconductor FPGA Synthesis Library ..................................................................................... 15-8 Implementing Multiplexers .................................................................................................................... 15-10 Clock Dividers ....................................................................................................................................... 15-10 Register Control Signals ....................................................................................................................... 15-12 Use PIC Features ...

Page 9

... PCB Fabrication Cost and Design Rule Considerations ................................................................................ 19-12 Advantages and Disadvantages of BGA Packaging ...................................................................................... 19-13 BGA Package Test and Assembly ................................................................................................................. 19-14 PCB Design Support ...................................................................................................................................... 19-17 Technical Support Assistance........................................................................................................................ 19-17 Revision History ............................................................................................................................................. 19-18 Section III. LatticeXP Family Handbook Revision History Revision History ............................................................................................................................................... 20-1 LatticeXP Family Handbook 8 Table of Contents ...

Page 10

... Section I. LatticeXP Family Data Sheet DS1001 Version 05.1, November 2007 ...

Page 11

... Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. ...

Page 12

... The ispLEVER tool uses the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the LatticeXP device. The ispLEVER tool extracts the timing from the routing and back- annotates it into the design for timing verification. ...

Page 13

... Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. ...

Page 14

... Functional Unit (PFU) PFU and PFF Blocks The core of the LatticeXP devices consists of PFU and PFF blocks. The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM and Distributed ROM functions. PFF blocks can be programmed to perform Logic, Arithmetic and ROM functions. Except where necessary, the remainder of the data sheet will use the term PFU to refer to both PFU and PFF blocks ...

Page 15

... Different slice / PFU Fast Carry In (FCI) Slice CO F LUT4 & SUM CARRY CI LUT Expansion Mux CO LUT4 & F CARRY OFX0 SUM From Different slice / PFU Fast Carry Out (FCO) 2-3 Architecture LatticeXP Family Data Sheet OFX1 F1 D FF/ Q1 Latch To Routing OFX0 F0 D FF/ Q0 Latch ...

Page 16

... Output of a LUT6, LUT7, LUT8 FCO For the right most PFU the fast carry chain output Logic Ripple 2-bit Arithmetic Unit 2-bit Arithmetic Unit 2-4 Architecture LatticeXP Family Data Sheet Description 2 MUX depending on the slice 1 RAM ROM SP 16x2 ROM 16x1 x 2 N/A ...

Page 17

... Lattice Semiconductor The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the soft- ware will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-4 shows the dis- tributed memory primitive block diagrams ...

Page 18

... MUX 16x1 These modes are not available in PFF blocks Routing There are many resources provided in the LatticeXP devices to route signals individually or as buses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) seg- ments. The inter-PFU connections are made with x1 (spans two PFU), x2 (spans three PFU) and x6 (spans seven PFU). ...

Page 19

... Note: Smaller devices have two PLLs. Secondary Clock Sources LatticeXP devices have four secondary clock resources per quadrant. The secondary clock branches are tapped at every PFU. These secondary clock networks can also be used for controls and high fanout data. These secondary clocks are derived from four clock input pads and 16 routing signals as shown in Figure 2-6 ...

Page 20

... From Routing Clock Routing The clock routing structure in LatticeXP devices consists of four Primary Clock lines and a Secondary Clock net- work per quadrant. The primary clocks are generated from MUXs located in each quadrant. Figure 2-7 shows this clock routing. The four secondary clocks are generated from MUXs located in each quadrant as shown in Figure 2- 8 ...

Page 21

... VCO to operate at higher frequencies than the clock output, thereby increasing the fre- quency range. The secondary divider is used to derive lower frequency outputs. 4 Secondary Clocks per Quadrant Routing GND parameter has been satisfied. Additionally, the phase and duty cycle block LOCK 2-9 Architecture LatticeXP Family Data Sheet Clock to Each Slice ...

Page 22

... Controlled VCO Adjust Oscillator Divider (CLKFB) RST CLKOP CLKI LOCK CLKFB DDA MODE DDAIZR DDAILAG DDAIDEL[2:0] Description 2-10 Architecture LatticeXP Family Data Sheet LOCK Post Scalar Phase/Duty CLKOS Divider Select (CLKOP) CLKOP Secondary Clock CLKOK Divider (CLKOK) CLKOP CLKOS CLKOK LOCK ...

Page 23

... SEL DCSOUT sysMEM Memory The LatticeXP family of devices contain a number of sysMEM Embedded Block RAM (EBR). The EBR consists of a 9-Kbit RAM, with dedicated input and output registers. sysMEM Memory Block The sysMEM block can implement single port, dual port or pseudo dual port memories. Each block can be used in a variety of depths and widths as shown in Table 2-6 ...

Page 24

... ROM. Memory Cascading Larger and deeper blocks of RAMs can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs. Single, Dual and Pseudo-Dual Port Modes Figure 2-14 shows the four basic memory configurations and their input/output names ...

Page 25

... EBR RSTA WEA CSA[2:0] DOA[17:0] True Dual Port RAM ADW[12:0] DI[35:0] CLKW CEW DO[35:0] EBR WE RST CS[2:0] ROM Pseudo-Dual Port RAM 2-13 Architecture LatticeXP Family Data Sheet ADB[12:0] DIB[17:0] CEB CLKB EBR RSTB WEB CSB[2:0] DOB[17:0] ADR[12:0] DO[35:0] EBR CER CLKR ...

Page 26

... Figure 2-17. The PIO Block supplies the output data (DO) and the Tri-state control signal (TO) to sysIO buffer, and receives input from the buffer. Memory Core Output Data Programmable Disable Reset Clock Clock Enable 2-14 Architecture LatticeXP Family Data Sheet SET Q Port A[17: CLR Latches SET Port B[17:0] Q ...

Page 27

... DQS DDRCLKPOL In the LatticeXP family, seven PIOs or four (3.5) PICs are grouped together to provide two LVDS differential pairs, one PIC pair and one single I/O, as shown in Figure 2-18. Two adjacent PIOs can be joined to provide a differential I/O pair (labeled as “T” and “C”). The PAD Labels “T” and “ ...

Page 28

... Input signals are fed from the sysIO buffer to the input register block (as signal DI). If desired the input signal can bypass the register and delay elements and be used directly as a combinatorial signal (INDD), a clock (INCK) and LatticeXP Family Data Sheet PIO A PADA “T” ...

Page 29

... DDR memory section of this data sheet. Figure 2-20. Input Register Diagram DI (From sysIO Buffer) Delay Block Fixed Delay DQS Delayed (From DQS Bus) CLK0 (From Routing) DDRCLKPOL (From DDR Polarity Control Bus) LatticeXP Family Data Sheet SDR & Sync DDR Registers Registers D-Type D-Type /LATCH ...

Page 30

... Figure 2-24 shows the design tool DDR primitives. The SDR output register has reset and clock enable available. The additional register for DDR operation does not have reset or clock enable available ECLK QA LSR IDDRXB SCLK QB CE DDRCLKPOL 2-18 Architecture LatticeXP Family Data Sheet ...

Page 31

... In DDR mode, ONEG1 is fed into one register on the positive edge of the clock and OPOS1 is latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0 D-Type /LATCH Q D LATCH LE* *Latch is transparent when input is low ODDRXB CLK LSR 2-19 Architecture LatticeXP Family Data Sheet OUTDDN sysIO 1 Buffer Programmed Control Q ...

Page 32

... Implementing high performance DDR memory interfaces requires dedicated DDR register structures in the input (for read operations) and in the output (for write operations). As indicated in the PIO Logic section, the LatticeXP devices provide this capability. In addition to these registers, the LatticeXP devices contain two elements to simplify the design of input structures for read operations: the DQS delay block and polarity control logic ...

Page 33

... Reg. GSR CLKI CEI To DDR DQS Reg. PIO Polarity Control Logic DQSDEL Calibration Bus from DLL Polarity Control Signal Bus DLL DLL 2-21 Architecture LatticeXP Family Data Sheet DDR sysIO Datain Buffer PAD DI DQS sysIO Strobe Buffer PAD DI DQS Signal Bus ...

Page 34

... Each bank can support up to two separate VREF voltages, VREF1 and VREF2 that set the threshold for the refer- enced input buffers. In the LatticeXP devices, a dedicated pin in a bank can be configured reference voltage supply pin. Each I/O is individually configurable based on the bank’s supply and reference voltages. ...

Page 35

... GND Note: N and M are the maximum number of I/Os per bank. LatticeXP devices contain two types of sysIO buffer pairs. 1. Top and Bottom sysIO Buffer Pair (Single-Ended Outputs Only) The sysIO buffer pairs in the top and bottom banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). The referenced input buffer can also be configured as a differential input. ...

Page 36

... LVPECL, differential SSTL and differential HSTL. Tables 2-7 and 2-8 show the I/O standards (together with their supply and reference voltages) supported by the LatticeXP devices. For further information on utilizing the sysIO buffer to support a variety of standards please see the details of additional technical documentation at the end of this data sheet ...

Page 37

... Emulated with external resistors. Hot Socketing The LatticeXP devices have been carefully designed to ensure predictable behavior during power-up and power- down. Power supplies can be sequenced in any order. During power up and power-down sequences, the I/Os remain in tristate until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled to within specified limits, which allows easy integration with the rest of the system ...

Page 38

... Device Configuration All LatticeXP devices contain two possible ports that can be used for device configuration and programming. The test access port (TAP), which supports serial configuration, and the sysCONFIG port that supports both byte-wide and serial configuration. ...

Page 39

... Oscillator Every LatticeXP device has an internal CMOS oscillator which is used to derive a master serial clock for configura- tion. The oscillator and the master serial clock run continuously in the configuration mode. The default value of the LatticeXP Family Data Sheet ...

Page 40

... Table 2-10. Selectable Master Serial Clock (CCLK) Frequencies During Configuration Density Shifting The LatticeXP family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts ...

Page 41

... CCAUX © 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. ...

Page 42

... CCIO CCIO additive PU LVCMOS and LVTTL only Condition   (MAX and V . However, assumes monotonic rise/fall rates for V CCIO (MAX). CCAUX 3-2 DC and Switching Characteristics LatticeXP Family Data Sheet Min. Typ. Max. — — +/-1000 V and V CC, CCAUX CCIO. Units µA ...

Page 43

... LFXP20C All LFXP ‘C’ Devices LFXP3C LFXP6C LFXP10C LFXP15C LFXP20C LFXP3C LFXP6C 5 LFXP10C LFXP15C LFXP20C All LFXP ‘C’ Devices 3-3 DC and Switching Characteristics LatticeXP Family Data Sheet Min. Typ. Max. — — 10 — — 40 -30 — -150 30 — 150 30 — ...

Page 44

... A 6. Per bank Over Recommended Operating Conditions Device LFXP3E LFXP6E LFXP10E LFXP15E LFXP20E LFXP3C LFXP6C LFXP10C LFXP15C LFXP20C All LFXP3E/C LFXP6E/C LFXP10E/C LFXP15E/C LFXP20E/C 6 All All 3-4 DC and Switching Characteristics LatticeXP Family Data Sheet 5 Typ. Units ...

Page 45

... Assume normal bypass capacitor/decoupling capacitor across the supply =25°C, power supplies at nominal voltage Over Recommended Operating Conditions Device LFXP3E LFXP6E LFXP10E LFXP15E LFXP20E LFXP3C LFXP6C LFXP10C LFXP15C LFXP20C LFXP3E/C LFXP6E/C LFXP10E/C LFXP15 /C LFXP20E/C All 3-5 DC and Switching Characteristics LatticeXP Family Data Sheet 7 Typ. Units 110 ...

Page 46

... Bypass or decoupling capacitor across the supply. 5. JTAG programming is at 1MHz =25°C, power supplies at nominal voltage When programming via JTAG. DC and Switching Characteristics Device LFXP3E LFXP6E LFXP10E LFXP15E LFXP20E LFXP3C LFXP6C LFXP10C LFXP15C LFXP20C LFXP3E/C LFXP6E/C LFXP10E/C LFXP15E/C LFXP20E/C 7 All 3-6 LatticeXP Family Data Sheet .6 Typ Units ...

Page 47

... HSTL 18 Class I, II 1.71 HSTL 18 Class III 1.71 LVDS 2.375 1 LVPECL 3.135 1 BLVDS 2.375 1. Inputs on chip. Outputs are implemented with the addition of external resistors. DC and Switching Characteristics LatticeXP Family Data Sheet V CCIO Typ. Max. Min. 3.3 3.465 — 2.5 2.625 — 1.8 1.89 — ...

Page 48

... REF V + 0.1 3.6 0.4 REF V + 0.1 3.6 0.4 REF V + 0.1 3.6 0.4 REF V + 0.1 3.6 0.4 REF 3-8 DC and Switching Characteristics LatticeXP Family Data Sheet V Min (V) (mA) (mA) 20, 16, 12, -20, -16, -12 0.4 CCIO 0.2 0.1 CCIO 20, 16, 12, -20, -16, -12 0.4 ...

Page 49

... 100 ohms 100 ohms )/ 100 ohms Driver outputs OD shorted 3-9 DC and Switching Characteristics LatticeXP Family Data Sheet Min. Typ. Max. 0 — 2.4 +/-100 — — 1.2 1.8 THD V /2 1.2 1.9 THD V /2 1.2 2.0 THD — — +/-10 — 1.38 1 ...

Page 50

... I and class II) are supported in this mode. LVDS25E The top and bottom side of LatticeXP devices support LVDS outputs via emulated complementary LVCMOS out- puts in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 3-1 is one possi- ble solution for point-to-point signals ...

Page 51

... Output impedance Left end termination Right end termination Output high voltage 1.375 Output low voltage 1.125 Output differential voltage Output common mode voltage DC output current 3-11 DC and Switching Characteristics LatticeXP Family Data Sheet 2.5V 45-90 ohms, +/- 1% - 100 2.5V 100 + - 2.5V 100 100 ...

Page 52

... RSDS The LatticeXP devices support differential RSDS standard. This standard is emulated using complementary LVC- MOS outputs in conjunction with a parallel resistor across the driver outputs. The RSDS input standard is sup- ported by the LVDS differential input buffer. The scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation ...

Page 53

... Output impedance Driver series resistor Driver parallel resistor Receiver termination Output high voltage Output low voltage Output differential voltage Output common mode voltage Back impedance DC output current 3-13 DC and Switching Characteristics LatticeXP Family Data Sheet + Off-chip Typical Units 20 ohms 300 ohms ...

Page 54

... These timing numbers were generated using the ispLEVER design tool. Exact performance may vary with design and tool version. The tool uses internal parameters that have been characterized but are not tested on every device. Timing v.F0.11 DC and Switching Characteristics LatticeXP Family Data Sheet 1 -5 Timing 6.1 7 ...

Page 55

... Logic timing provided in the following sections of this data sheet and in the ispLEVER design tools are worst case numbers in the operating range. Actual delays at nominal temperature and voltage for best-case process can be much better than the values given in the tables. The ispLEVER design tool from Lattice can provide logic timing numbers at a particular temperature and voltage. ...

Page 56

... LFXP15 LFXP20 LFXP3 LFXP6 LFXP10 LFXP15 LFXP20 All All All All All All All All LFXP3/6/10/15 LFXP20 3-16 DC and Switching Characteristics LatticeXP Family Data Sheet - Min. Max. Min. Max. Min. — 5.12 — 6.12 — — 5.30 — 6.34 — — ...

Page 57

... Lattice Semiconductor Figure 3-5. DDR Timings DQ and DQS Read Timings DQS DQ DQ and DQS Write Timings DQS DQ DC and Switching Characteristics LatticeXP Family Data Sheet t DVADQ t DVEDQ t DQVBS t DQVAS 3-17 ...

Page 58

... DC and Switching Characteristics LatticeXP Family Data Sheet - Max. Min. Max. Min. Max. 0.28 — 0.34 — 0.40 0.44 — 0.53 — 0.63 0.90 — ...

Page 59

... Reset Signal Setup Time RSTSU 1. Internal parameters are characterized but not tested on every device. Timing v.F0.11 1 (Continued) Over Recommended Operating Conditions Description Min. — 1.00 1.00 3-19 DC and Switching Characteristics LatticeXP Family Data Sheet - Max. Min. Max. Min. Max. 1.61 — 1.94 — 2.32 — ...

Page 60

... Timing Diagrams PFU Timing Diagrams Figure 3-6. Slice Single/Dual Port Write Cycle Timing Figure 3-7. Slice Single /Dual Port Read Cycle Timing WRE AD[3:0] DO[1:0] CK WRE AD AD[3:0] D DI[1:0] DO[1:0] Old Data Old Data 3-20 DC and Switching Characteristics LatticeXP Family Data Sheet ...

Page 61

... Figure 3-9. Read Mode with Input and Output Registers CLKA CSA WEA ADA t DIA DOA Mem(n) data from previous read DOA (Registered DOA Mem(n) data from previous read output is only updated during a read cycle 3-21 DC and Switching Characteristics LatticeXP Family Data Sheet ACCESS ACCESS ACCESS ACCESS D1 D0 ...

Page 62

... Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive of the clock ACCESS ACCESS ACCESS old A0 Data old A1 Data Three consecutive writes ACCESS ACCESS ACCESS D0 D1 3-22 DC and Switching Characteristics LatticeXP Family Data Sheet ACCESS ACCESS ACCESS ...

Page 63

... DC and Switching Characteristics LatticeXP Family Data Sheet -4 -3 Units 0.5 0.5 0.4 0.4 0.5 0.5 0.6 0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.4 ...

Page 64

... DC and Switching Characteristics LatticeXP Family Data Sheet -4 -3 Units 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.3 0.3 0.1 0.1 0.3 ...

Page 65

... Jitter sample is taken over 10,000 samples of the primary PLL output with clean reference clock. 2. Output clock is valid after t for PLL reset and dynamic delay adjustment. LOCK 3. Using LVDS output buffers compared to CLKOP output. Timing v.F0.11 LatticeXP “C” Sleep Mode Timing Parameter t SLEEPN Low to I/O Tristate PWRDN t SLEEPN High to Power Up ...

Page 66

... Lattice Semiconductor LatticeXP sysCONFIG Port Timing Specifications Parameter sysCONFIG Byte Data Flow t Byte D[0:7] Setup Time to CCLK SUCBDI t Byte D[0:7] Hold Time to CCLK HCBDI t Clock to Dout in Flowthrough Mode CODO t CS[0:1] Setup Time to CCLK SUCS t CS[0:1] Hold Time to CCLK HCS t Write Signal Setup Time to CCLK ...

Page 67

... BTCO BTCOEN BTCRH t BTCRS Data Captured t t BTUPOEN BUTCO 3-27 DC and Switching Characteristics LatticeXP Family Data Sheet Typ. Max. — 1.1 1.7 — 1.4 2.0 — 0.9 1.5 — 1.1 1.7 — 1.3 1.9 Min. Max. — — 20 — 20 — ...

Page 68

... Note: Output test conditions for all other interfaces are determined by the respective standards DUT Test Poi  0pF 188 0pF 3-28 DC and Switching Characteristics LatticeXP Family Data Sheet Timing Ref. V LVCMOS 3.3 = 1.5V — LVCMOS 2 — CCIO LVCMOS 1 — CCIO LVCMOS 1 — CCIO LVCMOS 1 ...

Page 69

... PCLK[T, C]_[n:0]_[3:0] [LOC]DQS[num] © 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. ...

Page 70

... V is recommended. CC Test Output Enable tri-states all I/O pins when driven low. This pin has a I weak internal pull-up, but when not used an external pull- mended. 4-2 Pinout Information LatticeXP Family Data Sheet Descriptions is recom- CC ...

Page 71

... A B Complement A B Complement A B Complement A B Complement A B Complement A B Complement A B Complement 4-3 Pinout Information LatticeXP Family Data Sheet DDR Strobe (DQS) and Data (DQ) Pins True DQ DQ True DQ DQ True DQ DQ True DQ DQ True [Edge]DQSn DQ True DQ DQ True DQ DQ ...

Page 72

... XP3 100 TQFP 144 TQFP 208 PQFP 144 TQFP 208 PQFP 256 fpBGA 62 100 8/2 12/3 9/0 12/2 8/3 12/5 6/2 13/5 5/2 14/6 12/4 12/4 4/2 13/5 10/4 12 4-4 Pinout Information LatticeXP Family Data Sheet XP6 136 100 142 20/8 ...

Page 73

... Pinout Information LatticeXP Family Data Sheet XP20 300 188 268 128 76 112 40/17 26/11 39/16 40/17 26/11 ...

Page 74

... K9, K10, L6, L11, T1, T16 XP3: 27, 33, 34, — 129, 133, 134 or GND. CC 4-6 Pinout Information LatticeXP Family Data Sheet 388 fpBGA 484 fpBGA H9, J8, J15, K8, F10, F13, G9, G10, K15, L8, L15, M8, G13, G14, H8, M15, N8, N15, P8, H15, J7, J16, K6, P15, R9 K7, K16, K17, N6, ...

Page 75

... VCC 29 PB2B 30 PB5B 31 PB8A 32 PB8B 33 GNDIO5 34 PB9A 35 PB10B 36 PB11A 37 PB11B 38 VCCIO5 39 PB12A 40 PB12B 41 PB13A 42 PB13B 43 GND Bank /TOE - 4-7 Pinout Information LatticeXP Family Data Sheet Differential Dual Function - - - - - - - - T LUM0_PLLT_FB_A C LUM0_PLLC_FB_A - - - VREF1_7 - VREF2_7 - - 3 T DQS LUM0_PLLT_IN_A C LUM0_PLLC_IN_A PCLKT6_0 C PCLKC6_0 - - - - VREF1_5 - VREF2_5 DQS ...

Page 76

... PR18A 54 PR15B 55 PR14A 56 PR13B 57 PR13A 58 VCCIO3 59 GNDP1 60 VCCP1 61 PR9B 62 PR9A 63 PR8B 64 PR8A 65 VCCIO2 66 PR6B 67 PR5A 68 GNDIO2 69 PR3B 70 PR3A 71 VCCAUX 72 TDO 73 VCCJ 74 TDI 75 TMS 76 TCK 77 VCC 78 PT24A 79 PT23A 80 PT22B 81 PT21A 82 VCCIO1 83 PT20B 84 GNDIO1 85 PT17A 86 PT16A 87 PT15B LatticeXP Family Data Sheet Bank Differential ...

Page 77

... Pin Number Pin Function 88 PT14B 89 PT13B 90 GNDIO0 91 PT13A 92 PT12B 93 PT12A 94 VCCIO0 95 PT9A 96 PT8A 97 PT6A 98 PT5A 99 GND 100 CFG0 1. Applies to LFXP “C” only. 2. Applies to LFXP “E” only. 3. Supports dedicated LVDS outputs. LatticeXP Family Data Sheet Bank Differential 4-9 Pinout Information ...

Page 78

... PL23B 3 T DQS PL24A PL24B - - PL25A PL26A PL26B - - VCCAUX - - SLEEPN - - INITN - - VCC - VREF1_5 PB5B - VREF2_5 PB8B T - PB10A C - PB10B - - GNDIO5 - - PB12A - - PB13B 4-10 Pinout Information LatticeXP Family Data Sheet LFXP6 Bank Differential Dual Function LUM0_PLLT_FB_A 7 C LUM0_PLLC_FB_A VREF1_7 7 - VREF2_7 LUM0_PLLT_IN_A 7 C LUM0_PLLC_IN_A ...

Page 79

... GNDIO3 PR26A C - PR25B T - PR25A PR24B 3 T DQS PR24A - VREF1_3 PR23B - VREF2_3 PR22A C - PR21B T - PR21A - - GND - - PR20A C - PR19B - - VCCIO3 T - PR19A - - GNDP1 - - VCCP1 C PCLKC2_0 PR12B 4-11 Pinout Information LatticeXP Family Data Sheet LFXP6 Bank Differential Dual Function 5 T DQS PCLKT4_0 4 C PCLKC4_0 DQS 4 ...

Page 80

... GND C BUSY PT16B T CS1N PT16A C PCLKC0_0 PT15B T PCLKT0_0 PT15A C - PT14B - - VCCIO0 T DQS PT14A - DOUT PT12A - - GNDIO0 - WRITEN PT11A - VREF1_0 PT10A 4-12 Pinout Information LatticeXP Family Data Sheet LFXP6 Bank Differential Dual Function 2 T PCLKT2_0 2 C RUM0_PLLC_IN_A 2 T RUM0_PLLT_IN_A DQS VREF1_2 2 - VREF2_2 ...

Page 81

... Applies to LFXP “C” only. 2. Applies to LFXP “E” only. 3. Supports dedicated LVDS outputs. Dual Function Pin Function - DI PT9A - CSN PT8A - VREF2_0 PT6B - - CFG0 - - CFG1 - - DONE 4-13 Pinout Information LatticeXP Family Data Sheet LFXP6 Bank Differential Dual Function CSN 0 - VREF2_0 ...

Page 82

... PL16A PL16B T PCLKT6_0 PL17A C PCLKC6_0 PL17B - - PL18A - - PL18B - - VCC PL21A PL21B - - GNDIO6 - VREF1_6 PL22A - VREF2_6 PL23B - - VCCIO6 3 T DQS PL24A PL24B T - PL25A C - PL25B PL26A 4-14 Pinout Information LatticeXP Family Data Sheet LFXP6 Bank Differential Dual Function LUM0_PLLT_FB_A 7 C LUM0_PLLC_FB_A VREF1_7 7 - VREF2_7 ...

Page 83

... PB13B T DQS PB14A C - PB14B - - VCCIO5 T - PB15A C - PB15B T - PB16A C - PB16B - - GND - - VCC T - PB17A - - GNDIO4 C - PB17B T PCLKT4_0 PB18A C PCLKC4_0 PB18B T - PB19A - - VCCIO4 C - PB19B - - PB20A - - PB21B T DQS PB22A - - GNDIO4 4-15 Pinout Information LatticeXP Family Data Sheet LFXP6 Bank Differential Dual Function /TOE - - VREF1_5 VREF2_5 ...

Page 84

... PR21B T - PR21A - - GND C - PR20B T - PR20A C - PR19B - - VCCIO3 T - PR19A - - GNDP1 - - VCCP1 - - PR13A - - GND C PCLKC2_0 PR12B T PCLKT2_0 PR12A - - PR11B - - PR11A - - GNDIO2 C RUM0_PLLC_IN_A PR8B T RUM0_PLLT_IN_A PR8A PR7B 4-16 Pinout Information LatticeXP Family Data Sheet LFXP6 Bank Differential Dual Function 4 C VREF1_4 VREF2_4 4 T DQS ...

Page 85

... VCCIO1 C D3 PT23B T - PT23A C - PT22B T DQS PT22A - - GNDIO1 - - PT21B - D4 PT20A C - PT19B T D5 PT19A - - VCCIO1 C D6 PT18B T - PT18A - D7 PT17B - - GND - - VCC C BUSY PT16B - - GNDIO0 4-17 Pinout Information LatticeXP Family Data Sheet LFXP6 Bank Differential Dual Function DQS VREF1_2 2 - VREF2_2 RUM0_PLLC_FB_A 2 T RUM0_PLLT_FB_A ...

Page 86

... WRITEN PT11A C - PT10B T VREF1_0 PT10A C - PT9B - - VCCIO0 T DI PT9A C - PT8B T CSN PT8A C - PT7B T - PT7A - VREF2_0 PT6B - - PT5B - - GND - - CFG0 4-18 Pinout Information LatticeXP Family Data Sheet LFXP6 Bank Differential Dual Function 0 T CS1N 0 C PCLKC0_0 0 T PCLKT0_0 DQS DOUT WRITEN VREF1_0 ...

Page 87

... PL16B PL18A PL18B - - VCCP0 - - GNDP0 T PCLKT6_0 PL20A C PCLKC6_0 PL20B - - GNDIO6 - - PL22A - VREF1_6 PL23B PL24A PL24B PL25A PL25B PL26A - - GNDIO6 PL26B PL28A 4-19 Pinout Information LatticeXP Family Data Sheet LFXP10 Dual Bank Differential Function LUM0_PLLT_FB_A 7 C LUM0_PLLC_FB_A VREF1_7 DQS LUM0_PLLT_IN_A 7 C LUM0_PLLC_IN_A ...

Page 88

... PB10A C - PB10B T - PB11A C - PB11B - - GNDIO5 T - PB12A C VREF2_5 PB12B T - PB13A C - PB13B T - PB14A C - PB14B T - PB15A C - PB15B - - GNDIO5 - - PB16A - - PB17B T DQS PB18A C - PB18B T - PB19A C - PB19B 4-20 Pinout Information LatticeXP Family Data Sheet LFXP10 Dual Bank Differential Function VREF2_6 DQS LLM0_PLLT_FB_A 6 C LLM0_PLLC_FB_A /TOE - - VREF1_5 ...

Page 89

... VREF2_4 PB31A C - PB31B - - PB32A - - PB33B T DQS PB34A C - PB34B T - PB35A - - GNDIO4 C - PB35B - - GNDIO3 PR34B PR34A PR33B 3 T DQS PR33A - - PR32B - VREF1_3 PR31A - - GNDIO3 C - PR29B T - PR29A 4-21 Pinout Information LatticeXP Family Data Sheet LFXP10 Dual Bank Differential Function PCLKT4_0 4 C PCLKC4_0 DQS VREF1_4 ...

Page 90

... PR13B PR13A C RUM0_PLLC_IN_A PR12B T RUM0_PLLT_IN_A PR12A PR11B - - GNDIO2 PR8B PR8A PR7B 3 T DQS PR7A - - PR6B - VREF2_2 PR5A - - GNDIO2 PR4B PR4A C RUM0_PLLC_FB_A PR3B T RUM0_PLLT_FB_A PR3A 4-22 Pinout Information LatticeXP Family Data Sheet LFXP10 Dual Bank Differential Function RLM0_PLLC_IN_A 3 T RLM0_PLLT_IN_A DQS VREF2_3 ...

Page 91

... DQS PT26A - - GNDIO1 - - PT25B - D4 PT24A C - PT23B T D5 PT23A C D6 PT22B T - PT22A C D7 PT21B T - PT21A C BUSY PT20B - - GNDIO0 T CS1N PT20A C PCLKC0_0 PT19B T PCLKT0_0 PT19A C - PT18B T DQS PT18A 4-23 Pinout Information LatticeXP Family Data Sheet LFXP10 Dual Bank Differential Function - - - - - - - - - - - - - - - VREF1_1 1 T DQS ...

Page 92

... GNDIO0 T - PT6A - - CFG0 - - CFG1 - - DONE - - GND - - GND - - GND - - GND - - GND - - GND - - GND - - GND - - GND - - GND - - GND - - GND - - GND - - GND - - GND - - GND 4-24 Pinout Information LatticeXP Family Data Sheet LFXP10 Dual Bank Differential Function DOUT WRITEN VREF1_0 CSN VREF2_0 0 T DQS ...

Page 93

... VCCIO2 - - VCCIO2 - - VCCIO3 - - VCCIO3 - - VCCIO4 - - VCCIO4 - - VCCIO5 - - VCCIO5 - - VCCIO6 - - VCCIO6 - - VCCIO7 - - VCCIO7 4-25 Pinout Information LatticeXP Family Data Sheet LFXP10 Dual Bank Differential Function - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ...

Page 94

... PL20B PL22A PL22B - - VCCP0 - - GNDP0 T PCLKT6_0 PL28A - - GNDIO6 C PCLKC6_0 PL28B - - PL30A - VREF1_6 PL31B 3 T DQS PL32A PL32B - - GNDIO6 T LLM0_PLLT_IN_A PL33A C LLM0_PLLC_IN_A PL33B PL34A PL34B 4-26 Pinout Information LatticeXP Family Data Sheet LFXP20 Dual Bank Differential Function LUM0_PLLT_FB_A 7 C LUM0_PLLC_FB_A VREF1_7 DQS ...

Page 95

... GNDIO5 C - PB16B - - PB17A - - PB18B T DQS PB19A C - PB19B T - PB20A C - PB20B T - PB21A C VREF2_5 PB21B T - PB22A - - GNDIO5 C - PB22B T - PB23A C - PB23B T - PB24A C - PB24B - - PB25A - - PB26B T DQS PB27A 4-27 Pinout Information LatticeXP Family Data Sheet LFXP20 Dual Bank Differential Function VREF2_6 DQS LLM0_PLLT_FB_A 6 C LLM0_PLLC_FB_A /TOE - - ...

Page 96

... PB38B T - PB39A C - PB39B T VREF2_4 PB40A C - PB40B - - PB41A - - PB42B - - GNDIO4 T DQS PB43A C - PB43B T - PB44A C - PB44B - - GNDIO4 - - GNDIO4 - - GNDIO4 - - GNDIO3 - - GNDIO3 C RLM0_PLLC_FB_A PR42B T RLM0_PLLT_FB_A PR42A 4-28 Pinout Information LatticeXP Family Data Sheet LFXP20 Dual Bank Differential Function PCLKT4_0 4 C PCLKC4_0 DQS 4 C VREF1_4 4 ...

Page 97

... PCLKT2_0 PR21A PR20B 3 T DQS PR20A - - PR19B - VREF1_2 PR18A - - GNDIO2 PR17B PR17A C RUM0_PLLC_IN_A PR16B T RUM0_PLLT_IN_A PR16A - - PR15B - - GNDIO2 C - PR12B T - PR12A PR11B 3 T DQS PR11A 4-29 Pinout Information LatticeXP Family Data Sheet LFXP20 Dual Bank Differential Function DQS VREF1_3 RLM0_PLLC_IN_A 3 T RLM0_PLLT_IN_A ...

Page 98

... PT39B T D0 PT39A C D1 PT38B T VREF2_1 PT38A C - PT37B T D2 PT37A - - GNDIO1 C D3 PT36B T - PT36A C - PT35B T DQS PT35A - - PT34B - D4 PT33A C - PT32B T D5 PT32A - - GNDIO1 C D6 PT31B 4-30 Pinout Information LatticeXP Family Data Sheet LFXP20 Dual Bank Differential Function VREF2_2 RUM0_PLLC_FB_A 2 T RUM0_PLLT_FB_A ...

Page 99

... DQS PT19A - - PT18B - - PT17A - - GNDIO0 C - PT16B T - PT16A C - PT15B T - PT15A - - GNDIO0 - - GNDIO0 - - GNDIO0 - - CFG0 - - CFG1 - - DONE - - GND - - GND - - GND - - GND 4-31 Pinout Information LatticeXP Family Data Sheet LFXP20 Dual Bank Differential Function BUSY CS1N 0 C PCLKC0_0 0 T PCLKT0_0 DQS DOUT WRITEN VREF1_0 ...

Page 100

... VCCAUX - - VCCAUX - - VCCIO0 - - VCCIO0 - - VCCIO1 - - VCCIO1 - - VCCIO2 - - VCCIO2 - - VCCIO3 - - VCCIO3 - - VCCIO4 - - VCCIO4 4-32 Pinout Information LatticeXP Family Data Sheet LFXP20 Dual Bank Differential Function - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ...

Page 101

... G6 VCCIO7 7 H6 VCCIO7 7 1. Applies to LFXP “C” only. 2. Applies to LFXP “E” only. 3. Supports dedicated LVDS outputs. Dual Ball Function Function - - VCCIO5 - - VCCIO5 - - VCCIO6 - - VCCIO6 - - VCCIO7 - - VCCIO7 4-33 Pinout Information LatticeXP Family Data Sheet LFXP20 Dual Bank Differential Function ...

Page 102

... PL23A PL23B 6 C PL24A GNDIO6 6 - PL24B PL25A PL25B PL26A 6 - PL27B DQS PL28A PL28B GNDIO6 6 - 4-34 Pinout Information LatticeXP Family Data Sheet LFXP20 Ball Function Bank Diff. - PROGRAMN CCLK GNDIO7 PL6A PL6B GNDIO7 7 - PL7A 7 T PL7B 7 C LUM0_PLLC_FB_A 3 - PL8A PL8B PL9A 7 - VREF1_7 ...

Page 103

... PB10A PB10B PB11A PB11B 5 C PB12A GNDIO5 PB12B PB13A PB14B 5 - DQS PB15A PB15B PB16A 5 T 4-35 Pinout Information LatticeXP Family Data Sheet LFXP20 Ball Function Bank Diff. PL33A 6 T LLM0_PLLT_IN_A PL33B 6 C LLM0_PLLC_IN_A 3 - PL34A PL34B PL36A PL36B GNDIO6 PL37A PL37B PL38A ...

Page 104

... C - PB35A PB35B 4 C PB36A PB36B PB37A PB38B GNDIO4 4 - DQS PB39A PB39B PB40A PB40B PB41A 4 T 4-36 Pinout Information LatticeXP Family Data Sheet LFXP20 Ball Function Bank Diff. - PB20B PB21A 5 T VREF2_5 PB21B PB22A GNDIO5 PB22B PB23A PB23B PB24A PB24B PB25A PB26B ...

Page 105

... GNDIO3 PR28B DQS PR28A PR27B 3 - PR26A PR25B PR25A PR24B PR24A GNDIO3 PR23B PR23A GNDP1 - - 4-37 Pinout Information LatticeXP Family Data Sheet LFXP20 Ball Function Bank Diff. - PB45B PB46A PB46B PB47A PB47B GNDIO4 PB48A PB48B PB49A PB50B 4 - DQS PB51A PB51B PB52A GNDIO4 ...

Page 106

... TMS - - - TCK - - GNDIO1 PT48A PT47B PT47A PT46B PT45A PT44B PT44A PT43B GNDIO1 1 - 4-38 Pinout Information LatticeXP Family Data Sheet LFXP20 Ball Function Bank Diff. - VCCP1 - - - GNDIO2 PR22B PR22A 2 T PCLKC2_0 PR21B 2 C PCLKT2_0 PR21A PR20B DQS PR20A PR19B 2 - VREF1_2 PR18A ...

Page 107

... PT24A PT23B 0 C DQS PT23A PT22B 0 - DOUT PT21A PT20B GNDIO0 0 - PT20A PT19B 0 C PT19A PT18B 0 C 4-39 Pinout Information LatticeXP Family Data Sheet LFXP20 Ball Function Bank Diff. - PT47A PT46B PT46A PT45B PT45A PT44B PT44A 1 T VREF1_1 PT43B GNDIO1 1 - DQS PT43A ...

Page 108

... GND - - - GND - - - GND - - - GND - - - GND - - - GND - - - GND - - - GND - - - GND - - - GND - - - GND - - 4-40 Pinout Information LatticeXP Family Data Sheet LFXP20 Ball Function Bank Diff. DI PT22A PT21B 0 C CSN PT21A PT20B PT20A 0 T VREF2_0 PT19B 0 C DQS PT19A PT18B PT17A GNDIO0 PT16B ...

Page 109

... VCC - - - VCC - - - VCC - - - VCC - - - VCC - - - VCC - - - VCC - - - VCC - - - VCC - - - VCC - - - VCC - - - VCC - - - VCCAUX - - 4-41 Pinout Information LatticeXP Family Data Sheet LFXP20 Ball Function Bank Diff. Dual Function - GND - - - GND - - - GND - - - GND - - - GND - - - GND - - - GND - - - GND - - - GND - - - GND - - - GND - - - GND - - - ...

Page 110

... VCCIO5 VCCIO5 VCCIO5 VCCIO5 VCCIO5 VCCIO6 VCCIO6 VCCIO6 VCCIO6 VCCIO7 VCCIO7 VCCIO7 VCCIO7 7 - 4-42 Pinout Information LatticeXP Family Data Sheet LFXP20 Ball Function Bank Diff. Dual Function - VCCAUX - - - VCCAUX - - - VCCAUX - - - VCCIO0 VCCIO0 VCCIO0 VCCIO0 VCCIO0 VCCIO1 VCCIO1 VCCIO1 VCCIO1 VCCIO1 ...

Page 111

... PL12A C - PL12B PL13A PL13B PL15A PL15B - - GNDIO7 T LUM0_PLLT_IN_A PL16A C LUM0_PLLC_IN_A PL16B PL17A PL17B - VREF2_7 PL18A - - PL19B 3 T DQS PL20A - - GNDIO7 PL20B T - PL21A C - PL21B PL22A PL22B 4-43 Pinout Information LatticeXP Family Data Sheet LFXP20 Dual Bank Differential Function LUM0_PLLT_FB_A 7 C LUM0_PLLC_FB_A VREF1_7 ...

Page 112

... PL34A PL34B PL36A PL36B - - GNDIO6 T - PL37A C - PL37B PL38A PL38B - VREF2_6 PL39A - - PL40B 3 T DQS PL41A PL41B - - GNDIO6 T LLM0_PLLT_FB_A PL42A C LLM0_PLLC_FB_A PL42B PL43A PL43B PL44A PL44B 4-44 Pinout Information LatticeXP Family Data Sheet LFXP20 Dual Bank Differential Function PCLKT6_0 PCLKC6_0 VREF1_6 DQS ...

Page 113

... PB6B T - PB7A C - PB7B T - PB8A C - PB8B - - PB9A - - PB10B T DQS PB11A C - PB11B T - PB12A - - GNDIO5 C - PB12B T - PB13A C - PB13B T - PB14A C - PB14B T - PB15A C - PB15B T VREF1_5 PB16A - - GNDIO5 C - PB16B - - PB17A - - PB18B T DQS PB19A C - PB19B 4-45 Pinout Information LatticeXP Family Data Sheet LFXP20 Dual Bank Differential Function DQS ...

Page 114

... PB30A C - PB30B T PCLKT4_0 PB31A C PCLKC4_0 PB31B - - GNDIO4 T - PB32A C - PB32B - - PB33A - - PB34B T DQS PB35A C VREF1_4 PB35B T - PB36A C - PB36B T - PB37A - - GNDIO4 C - PB37B T - PB38A C - PB38B T - PB39A C - PB39B T VREF2_4 PB40A C - PB40B 4-46 Pinout Information LatticeXP Family Data Sheet LFXP20 Dual Bank Differential Function VREF2_5 DQS ...

Page 115

... PB50B T DQS PB51A C - PB51B T - PB52A C - PB52B - - GNDIO4 - - PB53A - - PB53B - - PB54A - - PB54B - - PB55A - - PB55B - - GNDIO4 - - PB56A - - GNDIO3 - - PR47A PR46B PR46A C - PR45B T - PR45A PR44B PR44A PR43B PR43A - - GNDIO3 4-47 Pinout Information LatticeXP Family Data Sheet LFXP20 Dual Bank Differential Function DQS DQS ...

Page 116

... T - PR29A C - PR28B T - PR28A - - GNDIO3 PR27B PR27A - - PR26B - - PR26A - - PR25B - - GNDP1 - - VCCP1 - - PR24A PR23B PR23A - - GNDIO2 - - PR22B - - PR22A C PCLKC2_0 PR21B T PCLKT2_0 PR21A 4-48 Pinout Information LatticeXP Family Data Sheet LFXP20 Dual Bank Differential Function 3 C RLM0_PLLC_FB_A 3 T RLM0_PLLT_FB_A DQS VREF1_3 RLM0_PLLC_IN_A 3 T RLM0_PLLT_IN_A ...

Page 117

... PR8B PR8A C RUM0_PLLC_FB_A PR7B T RUM0_PLLT_FB_A PR7A PR6B PR6A PR5B PR5A C - PR4B T - PR4A - - GNDIO2 PR3B PR3A - - PR2B - - TDO - - VCCJ - - TDI - - TMS - - TCK - - PT56A - - GNDIO1 4-49 Pinout Information LatticeXP Family Data Sheet LFXP20 Dual Bank Differential Function DQS VREF1_2 RUM0_PLLC_IN_A 2 T RUM0_PLLT_IN_A DQS 2 ...

Page 118

... PT44B T - PT44A C VREF1_1 PT43B - - GNDIO1 T DQS PT43A - - PT42B - - PT41A C - PT40B T - PT40A C - PT39B T D0 PT39A C D1 PT38B T VREF2_1 PT38A C - PT37B T D2 PT37A - - GNDIO1 C D3 PT36B T - PT36A C - PT35B T DQS PT35A 4-50 Pinout Information LatticeXP Family Data Sheet LFXP20 Dual Bank Differential Function DQS ...

Page 119

... T DI PT22A C - PT21B T CSN PT21A C - PT20B T - PT20A C VREF2_0 PT19B T DQS PT19A - - PT18B - - PT17A - - GNDIO0 C - PT16B T - PT16A C - PT15B T - PT15A C - PT14B T - PT14A C - PT13B T - PT13A 4-51 Pinout Information LatticeXP Family Data Sheet LFXP20 Dual Bank Differential Function BUSY CS1N 0 C PCLKC0_0 0 T PCLKT0_0 DQS ...

Page 120

... PT5A - - PT4B - - PT4A - - GNDIO0 - - PT3B - - CFG0 - - CFG1 - - DONE - - GND - - GND - - GND - - GND - - GND - - GND - - GND - - GND - - GND - - GND - - GND - - GND - - GND - - GND - - GND - - GND - - GND - - GND - - GND 4-52 Pinout Information LatticeXP Family Data Sheet LFXP20 Dual Bank Differential Function DQS ...

Page 121

... GND - - GND - - GND - - GND - - GND - - GND - - GND - - VCC - - VCC - - VCC - - VCC - - VCC 4-53 Pinout Information LatticeXP Family Data Sheet LFXP20 Dual Bank Differential Function - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ...

Page 122

... VCCAUX - - VCCAUX - - VCCAUX - - VCCAUX - - VCCAUX - - VCCIO0 - - VCCIO0 - - VCCIO0 - - VCCIO0 - - VCCIO1 - - VCCIO1 - - VCCIO1 4-54 Pinout Information LatticeXP Family Data Sheet LFXP20 Dual Bank Differential Function - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ...

Page 123

... Dual Ball Function Function - - VCCIO1 - - VCCIO2 - - VCCIO2 - - VCCIO2 - - VCCIO2 - - VCCIO3 - - VCCIO3 - - VCCIO3 - - VCCIO3 - - VCCIO4 - - VCCIO4 - - VCCIO4 - - VCCIO4 - - VCCIO5 - - VCCIO5 - - VCCIO5 - - VCCIO5 - - VCCIO6 - - VCCIO6 - - VCCIO6 - - VCCIO6 - - VCCIO7 - - VCCIO7 - - VCCIO7 - - VCCIO7 4-55 Pinout Information LatticeXP Family Data Sheet LFXP20 Dual Bank Differential Function ...

Page 124

... For further information regarding Thermal Management, refer to the following located on the Lattice website at www.latticesemi.com. • Thermal Management document • Technical Note TN1052 - Power Estimation and Management for LatticeECP/EC and LatticeXP Devices • Power Calculator tool included with Lattice’s ispLEVER design tool standalone download from  www.latticesemi.com/software LatticeXP Family Data Sheet 4-56 ...

Page 125

... The markings appear as follows: © 2005 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. ...

Page 126

... Package 1.8/2.5/3.3V -3 fpBGA 1.8/2.5/3.3V -4 fpBGA 1.8/2.5/3.3V -5 fpBGA 1.8/2.5/3.3V -3 fpBGA 1.8/2.5/3.3V -4 fpBGA 1.8/2.5/3.3V -5 fpBGA 5-2 Ordering Information LatticeXP Family Data Sheet Pins Temp. LUTs 208 COM 3.1K 208 COM 3.1K 208 COM 3.1K 144 COM 3.1K 144 COM 3.1K 144 COM 3.1K ...

Page 127

... LFXP20C-5F388C 268 LFXP20C-3F256C 188 LFXP20C-4F256C 188 LFXP20C-5F256C 188 Part Number I/Os LFXP3E-3Q208C 136 LFXP3E-4Q208C 136 LFXP3E-5Q208C 136 LFXP3E-3T144C 100 LFXP3E-4T144C 100 LFXP3E-5T144C 100 LFXP3E-3T100C 62 LFXP3E-4T100C 62 LFXP3E-5T100C 62 Commercial (Cont.) Voltage Grade Package 1.8/2.5/3.3V -3 fpBGA 1.8/2.5/3.3V -4 fpBGA 1.8/2.5/3.3V -5 fpBGA 1.8/2.5/3.3V -3 fpBGA 1.8/2.5/3.3V ...

Page 128

... Ordering Information LatticeXP Family Data Sheet Pins Temp. LUTs 256 COM 5.8K 256 COM 5.8K 256 COM 5.8K 208 COM 5.8K 208 COM 5.8K 208 COM 5.8K ...

Page 129

... TQFP 1.8/2.5/3.3V -4 TQFP Voltage Grade Package 1.8/2.5/3.3V -3 fpBGA 1.8/2.5/3.3V -4 fpBGA 1.8/2.5/3.3V -3 fpBGA 1.8/2.5/3.3V -4 fpBGA 5-5 Ordering Information LatticeXP Family Data Sheet Pins Temp. LUTs 484 COM 19.7K 484 COM 19.7K 484 COM 19.7K 388 COM 19.7K 388 COM 19.7K 388 COM 19 ...

Page 130

... LFXP20C-4F484I 340 LFXP20C-3F388I 268 LFXP20C-4F388I 268 LFXP20C-3F256I 188 LFXP20C-4F256I 188 Part Number I/Os LFXP3E-3Q208I 136 LFXP3E-4Q208I 136 LFXP3E-3T144I 100 LFXP3E-4T144I 100 LFXP3E-3T100I 62 LFXP3E-4T100I 62 Part Number I/Os LFXP6E-3F256I 188 LFXP6E-4F256I 188 LFXP6E-3Q208I 142 LFXP6E-4Q208I 142 LFXP6E-3T144I 100 LFXP6E-4T144I 100 Part Number I/Os ...

Page 131

... Package 1.2V -3 fpBGA 1.2V -4 fpBGA 1.2V -3 fpBGA 1.2V -4 fpBGA 1.2V -3 fpBGA 1.2V -4 fpBGA 5-7 Ordering Information LatticeXP Family Data Sheet Pins Temp. LUTs 484 IND 15.5K 484 IND 15.5K 388 IND 15.5K 388 IND 15.5K 256 IND 15.5K 256 IND 15.5K Pins Temp ...

Page 132

... Ordering Information LatticeXP Family Data Sheet Pins Temp. LUTs 208 COM 3.1K 208 COM 3.1K 208 COM 3.1K 144 COM 3.1K 144 COM 3.1K 144 COM 3.1K ...

Page 133

... LFXP20C-5FN256C 188 Part Number I/Os LFXP3E-3QN208C 136 LFXP3E-4QN208C 136 LFXP3E-5QN208C 136 LFXP3E-3TN144C 100 LFXP3E-4TN144C 100 LFXP3E-5TN144C 100 LFXP3E-3TN100C 62 LFXP3E-4TN100C 62 LFXP3E-5TN100C 62 Part Number I/Os LFXP6E-3FN256C 188 LFXP6E-4FN256C 188 LFXP6E-5FN256C 188 LFXP6E-3QN208C 142 LFXP6E-4QN208C 142 LFXP6E-5QN208C 142 LFXP6E-3TN144C 100 LFXP6E-4TN144C 100 LFXP6E-5TN144C ...

Page 134

... Package 1.8/2.5/3.3V -3 fpBGA 1.8/2.5/3.3V -4 fpBGA 1.8/2.5/3.3V -3 PQFP 1.8/2.5/3.3V -4 PQFP 1.8/2.5/3.3V -3 TQFP 1.8/2.5/3.3V -4 TQFP 5-10 Ordering Information LatticeXP Family Data Sheet Pins Temp. LUTs 484 COM 15.5K 484 COM 15.5K 484 COM 15.5K 388 COM 15.5K 388 COM 15.5K 388 COM 15.5K ...

Page 135

... LFXP20C-4FN484I 340 LFXP20C-3FN388I 268 LFXP20C-4FN388I 268 LFXP20C-3FN256I 188 LFXP20C-4FN256I 188 Part Number I/Os LFXP3E-3QN208I 136 LFXP3E-4QN208I 136 LFXP3E-3TN144I 100 LFXP3E-4TN144I 100 LFXP3E-3TN100I 62 LFXP3E-4TN100I 62 Part Number I/Os LFXP6E-3FN256I 188 LFXP6E-4FN256I 188 LFXP6E-3QN208I 142 LFXP6E-4QN208I 142 LFXP6E-3TN144I 100 LFXP6E-4TN144I 100 Industrial (Cont.) Voltage ...

Page 136

... Package 1.2V -3 fpBGA 1.2V -4 fpBGA 1.2V -3 fpBGA 1.2V -4 fpBGA 1.2V -3 fpBGA 1.2V -4 fpBGA 5-12 Ordering Information LatticeXP Family Data Sheet Pins Temp. LUTs 388 IND 9.7K 388 IND 9.7K 256 IND 9.7K 256 IND 9.7K Pins Temp. LUTs 484 IND 15.5K ...

Page 137

... PCI: www.pcisig.com © 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. ...

Page 138

... DC and Switching Characteristics © 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. ...

Page 139

... Updated Typical Building Block Function Performance timing numbers. Updated External Switching Characteristics timing numbers. Updated Internal Timing Parameters. Updated LatticeXP Family timing adders. Updated LatticeXP "C" Sleep Mode timing numbers. Updated JTAG Port Timing numbers. Added clarification to SLEEPN and TOE description. Clarification of dedicated LVDS outputs. ...

Page 140

... Section II. LatticeXP Family Technical Notes ...

Page 141

... Lattice EC/ECP and LatticeXP devices. © 2006 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. ...

Page 142

... RSDS 2.375 1. Inputs on chip. Outputs are implemented with the addition of external resistors. sysIO Banking Scheme LatticeECP/EC and LatticeXP devices have eight programmable sysIO banks, two per side. Each sysIO bank has a V supply voltage and two reference voltages, V CCIO fer pair consists of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and ref- erenced) ...

Page 143

... REF1 pins is pre-determined within the bank. These pins REF voltage. REF input must be used as the reference voltage for the DQS and DQ REF1 and GND is used to generate an on-chip reference volt- REF1 8-3 LatticeECP/EC and LatticeXP sysIO Usage Guide V CCIO2 V REF1(2) V REF2(2) GND V ...

Page 144

... For more information on the DQS transition detect logic and its implementation please refer to REF2. Lattice technical note number TN1050, LatticeECP/EC DDR Usage Guide. Mixed Voltage Support in a Bank The LatticeECP/EC and LatticeXP sysIO buffer is connected to three parallel ratioed input buffers. These three par- allel buffers are connected to V CCIO, as fixed thresholds for 3.3V (V ...

Page 145

... I/O independently. The drive strength setting available are 2mA, 4mA, 6mA, 8mA, 12mA, 16mA and 20mA. Actual options available vary by the I/O voltage. The user must consider the maximum allowable current per bank and the package thermal limit current when selecting the drive strength. LatticeECP/EC and LatticeXP Right Side Bottom Side ...

Page 146

... The actual impedance matching may vary on the transmission line design and the load. To find the best matching recommended to drive the transmission line with different combinations of I/O standards and drive strengths that best match the line impedance. Lattice provides IBIS buffer models for the users to further analyze the imped- ance matching. ...

Page 147

... OPENDRAIN attribute in the software. The software implements open drain in the LatticeECP/EC and LatticeXP devices by connecting the data and tristate input of the output buffer. Software will implement open drain using this method for simple output buffers. If the user wants to assign open drain functionality to a bidirectional I/O, a similar implementation is required in the HDL design ...

Page 148

... EXT 8-8 LatticeECP/EC and LatticeXP sysIO Usage Guide V CCIO PCI Clamp Diode between 2.5V to 3.3V. is 2.75V. CCIO = 3.75 - 2.75 =1V Units µA µA µ ...

Page 149

... There is no separate attribute to set the V I/O types )/I = (5.25V - 3.75V)/27.4 = 54.8 ohm EXT INMAX D required to set these I/O standards are embedded in CCIO CCIO 8-9 LatticeECP/EC and LatticeXP sysIO Usage Guide requirements. Table 8-6 lists the available ...

Page 150

... LVCMOS and LVTTL I/O standards can be set to Open Drain configuration by using the OPENDRAIN attribute. Values: ON, OFF Default: OFF DRIVE The drive strength attribute is available for LVTTL and LVCMOS output standards. These can be set or each I/O pin individually. LatticeECP/EC and LatticeXP IO_TYPE LVCMOS12 LVCMOS25 LVDS25 RSDS ...

Page 151

... I/O registers if applicable. The user can turn this OFF by using the synthesis attribute or using the preference editor of the software. These attributes can only be applied on registers. CCIO. CCIO V CCIO 1.2 V 1 8-11 LatticeECP/EC and LatticeXP sysIO Usage Guide Table 8-7 shows the drive strength available Voltages 2 ...

Page 152

... All banks support emulated differential buffers using external resistor pack and complementary LVCMOS drivers. • In LatticeXP devices, not all PIOs have LVDS capability. Only four out of every seven I/Os can provide LVDS buffer capability. In LatticeECP/EC devices, there are no restrictions on the number of I/Os that can support LVDS ...

Page 153

... True LVDS (LVDS25) drivers are available on the left and right side of the devices. LVDS input support is provided on all sides of the device. All four sides support LVDS using complementary LVCMOS drivers with external resis- tors (LVDS25E). Please refer to the LatticeECP/EC and LatticeXP data sheets for a more detailed explanation of these LVDS imple- mentations. BLVDS All single-ended sysIO buffer pairs in the LatticeECP family support the Bus-LVDS standard using complementary LVCMOS drivers with external resistors ...

Page 154

... Lattice Semiconductor Internet: www.latticesemi.com LatticeECP/EC and LatticeXP 8-14 sysIO Usage Guide ...

Page 155

... Declaration*** ATTRIBUTE IO_TYPE: string; --***IO_TYPE assignment for I/O Pin*** ATTRIBUTE IO_TYPE OF portA: ATTRIBUTE IO_TYPE OF portB: ATTRIBUTE IO_TYPE OF portC: ® and Precision Syntax SIGNAL IS “PCI33”; SIGNAL IS “LVCMOS33”; SIGNAL IS “LVDS25”; 8-15 LatticeECP/EC and LatticeXP sysIO Usage Guide ® RTL Synthesis ...

Page 156

... SLEWRATE assignment for I/O Pin*** ATTRIBUTE SLEWRATE OF portB: SIGNAL IS “FAST”; FIXEDDELAY --***Attribute Declaration*** ATTRIBUTE FIXEDDELAY: string; --*** SLEWRATE assignment for I/O Pin*** ATTRIBUTE FIXEDDELAY OF portB: SIGNAL IS “TRUE”; SIGNAL IS "DOWN"; SIGNAL IS "UP"; SIGNAL IS "ON"; 8-16 LatticeECP/EC and LatticeXP sysIO Usage Guide ...

Page 157

... I/O Pin*** ATTRIBUTE din OF input_vector: SIGNAL IS “ “; ATTRIBUTE dout OF output_vector: SIGNAL IS “ “; LOC --***Attribute Declaration*** ATTRIBUTE LOC : string; --*** LOC assignment for I/O Pin*** ATTRIBUTE LOC OF input_vector: SIGNAL IS “E3,B3,C3 “; LatticeECP/EC and LatticeXP 8-17 sysIO Usage Guide ...

Page 158

... PinType PinName /* synthesis PCICLAMP =” PCIClamp Value”*/; PinType PinName /* synthesis SLEWRATE=”Slewrate Value”*/; PinType PinName /* synthesis FIXEDDELAY=”Fixeddelay Value”*/; PinType PinName /* synthesis DIN=” “*/; PinType PinName /* synthesis DOUT=” “*/; PinType PinName /* synthesis LOC=”pin_locations “*/; 8-18 LatticeECP/EC and LatticeXP sysIO Usage Guide ...

Page 159

... Lattice Semiconductor //I/O pin location input [3:0] DATA0 /* synthesis loc=”E3,B1,F3”*/; //Register pin location reg data_in_ch1_buf_reg3 /* synthesis loc=”R40C47” */; //Vectored internal bus reg [3:0] data_in_ch1_reg /*synthesis loc =”R40C47,R40C46,R40C45,R40C44” */; LatticeECP/EC and LatticeXP 8-19 sysIO Usage Guide ...

Page 160

... PinName DRIVE Drive Value //pragma attribute PinName IO_TYPE Pullmode Value //pragma attribute PinName PCICLAMP PCIClamp Value //pragma attribute PinName IO_TYPE Slewrate Value //pragma attribute PinName IO_TYPE Fixeddelay Value //pragma attribute PinName LOC pin_location 8-20 LatticeECP/EC and LatticeXP sysIO Usage Guide ...

Page 161

... Lattice Semiconductor // ***Fixeddelay*** // pragma attribute load FIXEDDELAY TRUE //***LOC*** //pragma attribute portB loc E3 LatticeECP/EC and LatticeXP 8-21 sysIO Usage Guide ...

Page 162

... Figure 8-4 and Figure 8-5 show the Pin Attribute Sheet and the Cell Attribute Sheet views of the Preference Editor. For further information on how to use the Preference Editor, refer to the ispLEVER Help documentation located in the Help menu option of the software. Figure 8-4. Pin Attributes Tab Figure 8-5. Cell Attributes Tab LatticeECP/EC and LatticeXP 8-22 sysIO Usage Guide ...

Page 163

... Note: If the comp_name, macro_name, or site_name begins with anything other than an alpha character (for exam- ple, “11C7”), you must enclose the name in quotes. Wildcard expressions are allowed in <comp_name>. Example This command places the port Clk0 on the site A4: LatticeECP/EC and LatticeXP 8-23 sysIO Usage Guide ...

Page 164

... PGROUP “vref_pg2” VREF “ref2” COMP “al(0)” COMP “al(1)” COMP “al(2)” COMP “al(3)” COMP “al(4)” COMP “al(5)” COMP “al(6)” COMP “al(7)”; LOCATE VREF “ref1” SITE PR29C; LatticeECP/EC and LatticeXP 8-24 sysIO Usage Guide ...

Page 165

... Lattice Semiconductor LOCATE VREF “ref2” SITE PR48B; or LOCATE PGROUP “ vref_pg1” BANK 2; LOCATE PGROUP “ vref_pg2” BANK 2; LatticeECP/EC and LatticeXP 8-25 sysIO Usage Guide ...

Page 166

... Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. ...

Page 167

... Interface sysCONFIG Programming Port (includes dedicated and dual use pins) Programmable Functional Unit (PFU) Figure 9-2. Simplified Block Diagram, LatticeECP Device (Top Level) Programmable I/O Cell (PIC) includes sysIO Interface sysCONFIG Programming Port (includes dedicated and dual use pins) ...

Page 168

... Distributed ROM (Distributed_ROM) – PFU/PFF based IPexpress Flow For generating any of these memories, create (or open) a project for the LatticeECP/EC or LatticeXP devices. From the Project Navigator, select Tools > IPexpress. Alternatively, users can also click on the button in the tool- bar when the LatticeECP/EC and LatticeXP devices are targeted in the project. ...

Page 169

... Memory- Module > Distributed RAM and EBR_Components and the PFU-based Distributed Memory Modules are under Storage_Components as shown in Figure 9-4. Let us look at an example of the generating an EBR-based Pseudo Dual Port RAM of size 512 x 16. Select RAM_DP under the EBR_Components. The right pane changes, as shown in Figure 9-5. Memory Usage Guide LatticeECP/EC and LatticeXP Devices 9-4 ...

Page 170

... Then click the Customize button. This opens another window where the RAM can be customized. The the left-hand side of this window shows the block diagram of the module. The right-hand side includes the Configuration tab. Memory Usage Guide LatticeECP/EC and LatticeXP Devices 9-5 ...

Page 171

... Once the Module is generated, users can either instantiate the *.lpc or the Verilog-HDL/ VHDL file in the top level module of their design. The various memory modules, both EBR and Distributed, are discussed in detail later in this document. Memory Usage Guide LatticeECP/EC and LatticeXP Devices 9-6 ...

Page 172

... Memory Modules Single Port RAM (RAM_DQ) – EBR Based The EBR blocks in the LatticeECP/EC and LatticeXP devices can be configured as Single Port RAM or RAM_DQ. IPexpress allows users to generate the Verilog-HDL or VHDL along an EDIF netlist for the memory size as per the design requirements. ...

Page 173

... PFU (external to the EBR blocks). Each EBR block consists of 9,216 bits of RAM. The values for x (for Address) and y (Data) for each EBR block for the devices are included in Table 9-2. Table 9-2. Single Port Memory Sizes for 9K Memories for LatticeECP/EC Devices Single Port Memory Size ...

Page 174

... Figure 9-9. Single Port RAM Timing Waveform – NORMAL Mode, without Output Registers Clock t SUCE_EBR ClockEn t SUWREN_EBR WrEn t SUADDR_EBR Address Add_0 Data Data_0 t SUDATA_EBR Q LatticeECP/EC and LatticeXP Devices t HWREN_EBR t HADDR_EBR Add_1 Add_0 Data_1 t HDATA_EBR Invalid Data 9-9 Memory Usage Guide t HCE_EBR Add_1 Add_2 ...

Page 175

... Figure 9-11. Single Port RAM Timing Waveform – READ BEFORE WRITE Mode, without Output Registers Clock t SUCE_EBR ClockEn WrEn t SUADDR_EBR Address Add_0 New Data Data_0 t SUDATA_EBR Q Invalid Data LatticeECP/EC and LatticeXP Devices t HWREN_EBR t HADDR_EBR Add_1 Add_0 Data_1 t HDATA_EBR Invalid Data t t SUWREN_EBR HWREN_EBR t HADDR_EBR ...

Page 176

... Figure 9-13. Single Port RAM Timing Waveform – WRITE THROUGH Mode, without Output Registers Clock t SUCE_EBR ClockEn WrEn t SUADDR_EBR Address Add_0 Data Data_0 t SUDATA_EBR Q Invalid Data LatticeECP/EC and LatticeXP Devices t t SUWREN_EBR HWREN_EBR t HADDR_EBR Add_0 Add_1 New Data_1 t HDATA_EBR Old_Data_0 t t SUWREN_EBR ...

Page 177

... Figure 9-14. Single Port RAM Timing Waveform – WRITE THROUGH Mode, with Output Registers Reset Clock t SUCE_EBR ClockEn WrEn t SUADDR_EBR Address Add_0 Data Data_0 t SUDATA_EBR Q Invalid Data LatticeECP/EC and LatticeXP Devices t t SUWREN_EBR HWREN_EBR t HADDR_EBR Add_1 Data_1 Data_2 t HDATA_EBR Data_0 9-12 Memory Usage Guide t HCE_EBR ...

Page 178

... Lattice Semiconductor True Dual Port RAM (RAM_DP_TRUE) – EBR Based The EBR blocks in the LatticeECP/EC and LatticeXP devices can be configured as True-Dual Port RAM or RAM_DP_TRUE. IPexpress allows users to generate the Verilog-HDL, VHDL or EDIF netlists for the memory size as per design requirements. IPexpress generates the memory module as shown in Figure 9-15. ...

Page 179

... Each EBR block consists of 9,216 bits of RAM. The values for x (for Address) and y (Data) for each EBR block for the devices are included in Table 9-5. Table 9-5. True Dual Port Memory Sizes for 9K Memory for LatticeECP/EC and LatticeXP Devices Dual Port ...

Page 180

... Lattice Semiconductor Table 9-6. True Dual Port RAM Attributes for LatticeECP/EC and LatticeXP Attribute Description DATA_WIDTH_A Data Word Width Port A DATA_WIDTH_B Data Word Width Port B REGMODE_A Register Mode (Pipelining) for Port A REGMODE_B Register Mode (Pipelining) for Port B RESETMODE Selects the Reset type ...

Page 181

... SUADDR_EBR Add_A0 AddressA DataA Data_A0 t SUDATA_EBR QA ClockB t SUCE_EBR ClockEnB t SUWREN_EBR WrEnB t SUADDR_EBR AddressB Add_B0 DataB Data_B0 t SUDATA_EBR QB LatticeECP/EC and LatticeXP Devices t HWREN_EBR t HADDR_EBR Add_A1 Add_A0 Data_A1 t HDATA_EBR Invalid Data t HWREN_EBR t HADDR_EBR Add_B1 Add_B0 Data_B1 t HDATA_EBR Invalid Data 9-16 Memory Usage Guide t ...

Page 182

... SUADDR_EBR Add_A0 AddressA Data_A0 DataA t SUDATA_EBR QA ClockB t SUCE_EBR ClockEnB t SUWREN_EBR WrEnB t SUADDR_EBR AddressB Add_B0 Data_B0 DataB t SUDATA_EBR QB LatticeECP/EC and LatticeXP Devices t HWREN_EBR t HADDR_EBR Add_A1 Add_A0 Data_A1 t HDATA_EBR Invalid Data t HWREN_EBR t HADDR_EBR Add_B1 Add_B0 Data_B1 t HDATA_EBR Invalid Data 9-17 Memory Usage Guide t ...

Page 183

... New DataA Data_A0 t SUDATA_EBR Invalid Data QA ClockB t SUCE_EBR ClockEnB WrEnB t SUADDR_EBR AddressB Add_B0 New DataB Data_B0 t SUDATA_EBR QB Invalid Data LatticeECP/EC and LatticeXP Devices t t SUWREN_EBR HWREN_EBR t HADDR_EBR Add_A0 Add_A1 New Data_A1 t HDATA_EBR Old_Data_A0 New_Data_A0 t CO_EBR t t SUWREN_EBR HWREN_EBR t HADDR_EBR Add_B0 Add_B1 ...

Page 184

... New DataA Data_A0 t SUDATA_EBR QA Invalid Data ClockB t SUCE_EBR ClockEnB WrEnB t SUADDR_EBR Add_B0 AddressB New DataB Data_B0 t SUDATA_EBR QB Invalid Data LatticeECP/EC and LatticeXP Devices t t SUWREN_EBR HWREN_EBR t HADDR_EBR Add_A0 Add_A1 New Data_A1 t HDATA_EBR Old_Data_A0 t t SUWREN_EBR HWREN_EBR t HADDR_EBR Add_B0 Add_B1 New Data_B1 ...

Page 185

... WrEnA t SUADDR_EBR Add_A0 AddressA DataA Data_A0 t SUDATA_EBR QA Invalid Data ClockB t SUCE_EBR ClockEnB WrEnB t SUADDR_EBR Add_B0 AddressB Data_B0 DataB t SUDATA_EBR QB Invalid Data LatticeECP/EC and LatticeXP Devices t SUWREN_EBR t HWREN_EBR t HADDR_EBR Add_A1 Data_A1 Data_A2 t HDATA_EBR Data_A0 Data_A1 t CO_EBR t SUWREN_EBR t HWREN_EBR t HADDR_EBR Add_B1 Data_B1 Data_B2 t ...

Page 186

... SUADDR_EBR AddressA Add_0 DataA Data_0 t SUDATA_EBR QA Invalid Data ClockB t SUCE_EBR ClockEnB WrEnB t SUADDR_EBR AddressB Add_0 DataB Data_0 t SUDATA_EBR QB Invalid Data LatticeECP/EC and LatticeXP Devices t t SUWREN_EBR HWREN_EBR t HADDR_EBR Add_1 Data_1 Data_2 t HDATA_EBR Data_0 t t SUWREN_EBR HWREN_EBR t HADDR_EBR Add_1 Data_1 Data_2 t HDATA_EBR ...

Page 187

... EBR block. If the specified memory is larger than one EBR block, multiple EBR block can be cascaded, in depth or width (as required to create these sizes). The basic Pseudo Dual Port memory primitive for the LatticeECP/EC and LatticeXP devices is shown in Figure 9- 24. ...

Page 188

... Each EBR block consists of 9,216 bits of RAM. The values for x (for Address) and y (Data) for each EBR block for the devices are included in Table 9-8. Table 9-8. Pseudo-Dual Port Memory Sizes for 9K Memory for LatticeECP/EC and LatticeXP Devices Pseudo-Dual Port Memory ...

Page 189

... Lattice Semiconductor Table 9-9. Pseudo-Dual Port RAM Attributes for LatticeECP/EC and LatticeXP Devices Attribute Description DATA_WIDTH_W Write Data Word Width DATA_WIDTH_R Read Data Word Width REGMODE Register Mode (Pipelining) RESETMODE Selects the Reset type CSDECODE_W Chip Select Decode for Write 000, 001, 010, 011, 100, 101, 110, 111 ...

Page 190

... Q Read Only Memory (ROM) – EBR Based The EBR blocks in the LatticeECP/EC and LatticeXP devices can be configured as Read Only Memory or ROM. IPexpress allows users to generate the Verilog-HDL or VHDL along with an EDIF netlist for the memory size as per design requirements. Users are required to provide the ROM memory content in the form of an initialization file. ...

Page 191

... Lattice Semiconductor Figure 9-28. ROM Primitive for LatticeECP/EC and LatticeXP Devices In the ROM mode the address for the port is registered at the input of the memory array. The output data of the memory is optionally registered at the output. The various ports and their definitions for the ROM are included in Table 9-10. The table lists the corresponding ports for the module generated by IPexpress and for the ROM primitive ...

Page 192

... Address Add_0 t SUADDR_EBR Q Invalid Data Figure 9-30. ROM Timing Waveform – with Output Registers OutClock t SUCE_EBR OutClockEn Address Add_0 t SUADDR_EBR Q Invalid Data LatticeECP/EC and LatticeXP Devices Add_1 Add_2 t HADDR_EBR Data_0 Data_1 Add_1 Add_2 t HADDR_EBR Data_0 t 9-27 Memory Usage Guide t HCE_EBR Add_3 ...

Page 193

... First In First Out (FIFO, FIFO_DC) – EBR Based The EBR blocks in the LatticeECP/EC and LatticeXP devices can be configured as First In First Out Memories – FIFO and FIFO_DC. FIFO has a common clock for both read and write ports and FIFO_DC (or Dual Clock FIFO) has separate clocks for these ports ...

Page 194

... Reset (or RST) only resets the output registers of the FIFO and FIFO_DC. It does not reset the contents of the memory. The various supported sizes for the FIFO and FIFO_DC in LatticeECP/EC and LatticeXP devices are shown in Table 9-12. Table 9-12. FIFO and FIFO_DC Data Widths Sizes for LatticeECP/EC and LatticeXP Devices ...

Page 195

... Empty Flag • Almost Empty Flag Let us first discuss the non-pipelined or the FIFO without output registers. Figure 9-33 shows the operation of the FIFO when it is empty and the data starts to get written into it. Memory Usage Guide LatticeECP/EC and LatticeXP Devices 9-30 ...

Page 196

... Now let is assume that we continue to write into the FIFO to fill it. When the FIFO is filled, the Almost Full and Full Flags are asserted. Figure 9-34 shows the behavior of these flags. In this figure we assume that FIFO depth is ‘N’. LatticeECP/EC and LatticeXP Devices Data_1 ...

Page 197

... Now let us look at the waveforms when the contents of the FIFO are read out. Figure 9-35 shows the start of the read cycle. RdEn goes high and the data read starts. The Full and Almost Full flags gets de-asserted as shown. LatticeECP/EC and LatticeXP Devices Data_N-2 ...

Page 198

... Figure 9-36. FIFO Without Output Registers, End of Data Read Cycle Reset Clock WrEn RdEn Data Q Data_N-4 Empty Almost Empty Full Almost Full LatticeECP/EC and LatticeXP Devices Invalid Data Data_1 Data_2 Data_3 Invalid Data Data_N-3 Data_N-2 Data_N-1 9-33 Memory Usage Guide Data_4 Data_5 ...

Page 199

... However it is only the data out 'Q' that gets delayed by one clock cycle. Figure 9-37. FIFO with Output Registers, Start of Data Write Cycle Reset Clock WrEn RdEn Data Invalid Data Q Empty Almost Empty Full Almost Full LatticeECP/EC and LatticeXP Devices Data_1 Data_2 Data_3 Invalid Q 9-34 Memory Usage Guide Data_4 Data_5 ...

Page 200

... Figure 9-39. FIFO with Output Registers, Start of Data Read Cycle Reset Clock WrEn RdEn Data Q Empty Almost Empty Full Almost Full LatticeECP/EC and LatticeXP Devices Data_N-2 Data_N-1 Data_N Invalid Q Invalid Data Invalid Data Data_1 Data_2 9-35 Memory Usage Guide Data_X Data_X ...

Related keywords