SAM9RL64 Atmel Corporation, SAM9RL64 Datasheet - Page 263

no-image

SAM9RL64

Manufacturer Part Number
SAM9RL64
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of SAM9RL64

Flash (kbytes)
0 Kbytes
Pin Count
217
Max. Operating Frequency
240 MHz
Cpu
ARM926
Hardware Qtouch Acquisition
No
Max I/o Pins
118
Ext Interrupts
118
Usb Transceiver
1
Usb Speed
Hi-Speed
Usb Interface
Device
Spi
1
Twi (i2c)
2
Uart
5
Ssc
2
Sd / Emmc
1
Graphic Lcd
Yes
Video Decoder
No
Camera Interface
No
Adc Channels
6
Adc Resolution (bits)
10
Adc Speed (ksps)
220
Resistive Touch Screen
Yes
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
64
Self Program Memory
NO
External Bus Interface
1
Dram Memory
sdram
Nand Interface
Yes
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8/3.3
Operating Voltage (vcc)
1.08 to 1.32
Fpu
No
Mpu / Mmu
No / Yes
Timers
3
Output Compare Channels
3
Input Capture Channels
3
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
No
27.3
27.4
27.5
6289D–ATARM–3-Oct-11
Processor Clock Controller
Peripheral Clock Controller
Programmable Clock Output Controller
Figure 27-1. Master Clock Controller
The PMC features a Processor Clock Controller (PCK) that implements the Processor Idle
Mode. The Processor Clock can be disabled by writing the System Clock Disable Register
(PMC_SCDR). The status of this clock (at least for debug purpose) can be read in the System
Clock Status Register (PMC_SCSR).
The Processor Clock PCK is enabled after a reset and is automatically re-enabled by any
enabled interrupt. The Processor Idle Mode is achieved by disabling the Processor Clock and
entering in Wait for Interrupt Mode. The Processor Clock is automatically re-enabled by any
enabled fast or normal interrupt, or by the reset of the product.
When the Processor Clock is disabled, the current instruction is finished before the clock is
stopped, but this does not prevent data transfers from other masters of the system bus.
Notes:
The Power Management Controller controls the clocks of each embedded peripheral by the way
of the Peripheral Clock Controller. The user can individually enable and disable the Master
Clock on the peripherals by writing into the Peripheral Clock Enable (PMC_PCER) and Periph-
eral Clock Disable (PMC_PCDR) registers. The status of the peripheral clock activity can be
read in the Peripheral Clock Status Register (PMC_PCSR).
When a peripheral clock is disabled, the clock is immediately stopped. The peripheral clocks are
automatically disabled after a reset.
In order to stop a peripheral, it is recommended that the system software wait until the peripheral
has executed its last programmed operation before disabling the clock. This is to avoid data cor-
ruption or erroneous behavior of the system.
The bit number within the Peripheral Clock Control registers (PMC_PCER, PMC_PCDR, and
PMC_PCSR) is the Peripheral Identifier defined at the product level. Generally, the bit number
corresponds to the interrupt source number assigned to the peripheral.
The PMC controls 2 signals to be output on external pins PCKx. Each signal can be indepen-
dently programmed via the PMC_PCKx registers.
MAINCK
PLLCK
SLCK
1. The Processor clock is disabled in PMC_SCDR register.
2. The ARM Wait For Interrupt mode is entered with CP15 coprocessor operation.
3. Refer to the Atmel application note
Systems”, lit. no. 6217 for details.
PMC_MCKR
CSS
PMC_MCKR
Master Clock
Prescaler
PRES
“Optimizing Power Consumption of AT91SAM9261-based
AT91SAM9R64/RL64
PMC_MCKR
Master
Divider
MDIV
Clock
MCK
To the Processor
Clock Controller (PCK)
263

Related parts for SAM9RL64