MC9S12NE64VTU Freescale Semiconductor, MC9S12NE64VTU Datasheet - Page 234

IC MCU 25MHZ ETHERNET/PHY 80TQFP

MC9S12NE64VTU

Manufacturer Part Number
MC9S12NE64VTU
Description
IC MCU 25MHZ ETHERNET/PHY 80TQFP
Manufacturer
Freescale Semiconductor
Series
HCS12r
Datasheet

Specifications of MC9S12NE64VTU

Mfg Application Notes
MC9S12NE64 Integrated Ethernet Controller Implementing an Ethernet Interface with the MC9S12NE64 Web Server Development with MC9S12NE64 and Open TCP
Core Processor
HCS12
Core Size
16-Bit
Speed
25MHz
Connectivity
EBI/EMI, Ethernet, I²C, SCI, SPI
Peripherals
POR, PWM, WDT
Number Of I /o
38
Program Memory Size
64KB (64K x 8)
Program Memory Type
FLASH
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
2.375 V ~ 3.465 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 105°C
Package / Case
80-TQFP Exposed Pad, 80-eTQFP, 80-HTQFP, 80-VQFP
Data Bus Width
16 bit
Data Ram Size
8 KB
Interface Type
I2C, SCI, SPI
Maximum Clock Frequency
25 MHz
Number Of Programmable I/os
70
Number Of Timers
16 bit
Operating Supply Voltage
- 0.3 V to + 3 V
Maximum Operating Temperature
+ 105 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 65 C
On-chip Adc
10 bit
For Use With
EVB9S12NE64E - BOARD EVAL FOR 9S12NE64DEMO9S12NE64E - DEMO BOARD FOR 9S12NE64
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S12NE64VTU
Manufacturer:
FREESCALE
Quantity:
1 831
Part Number:
MC9S12NE64VTU
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S12NE64VTUE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S12NE64VTUE
Manufacturer:
ALTERA
0
Part Number:
MC9S12NE64VTUE
Manufacturer:
FREESCALE
Quantity:
20 000
Chapter 8 Serial Communication Interface (SCIV3)
8.3.2.1
Read: anytime
234
SBR[11:8]
TNP[1:0]
SBR[7:0]
Reset
Reset
Field
IREN
Field
6:5
4:0
7:0
7
W
W
R
R
SBR7
IREN
Infrared Enable Bit — This bit enables/disables the infrared modulation/demodulation submodule.
0 IR disabled
1 IR enabled
Transmitter Narrow Pulse Bits — These bits determine if the SCI will transmit a 1/16, 3/16 or 1/32 narrow pulse.
Refer to
SCI Baud Rate Bits — The baud rate for the SCI is determined by the bits in this register. The baud rate is
calculated two different ways depending on the state of the IREN bit.
The formulas for calculating the baud rate are:
SCI Baud Rate Bits — The baud rate for the SCI is determined by the bits in this register. The baud rate is
calculated two different ways depending on the state of the IREN bit.
The formulas for calculating the baud rate are:
SCI Baud Rate Registers (SCIBDH and SCIBDL)
0
0
7
7
When IREN = 0 then,
When IREN = 1 then,
When IREN = 0 then,
When IREN = 1 then,
SCI baud rate = SCI module clock / (16 x SBR[12:0])
SCI baud rate = SCI module clock / (32 x SBR[12:1])
SCI baud rate = SCI module clock / (16 x SBR[12:0])
SCI baud rate = SCI module clock / (32 x SBR[12:1])
Table
TNP1
SBR6
8-3.
0
0
6
6
Figure 8-3. SCI Baud Rate Register High (SCIBDH)
Figure 8-4. SCI Baud Rate Register Low (SCIBDL)
Table 8-1. SCIBDH Field Descriptions
Table 8-2. SCIBDL Field Descriptions
TNP0
SBR5
MC9S12NE64 Data Sheet, Rev. 1.1
0
0
5
5
SBR12
SBR4
0
0
4
4
Description
Description
SBR11
SBR3
0
0
3
3
SBR10
SBR2
0
1
2
2
Freescale Semiconductor
SBR9
SBR1
0
0
1
1
SBR8
SBR0
0
0
0
0

Related parts for MC9S12NE64VTU