PIC18F26K20-E/ML Microchip Technology, PIC18F26K20-E/ML Datasheet - Page 34

IC PIC MCU FLASH 32KX16 28QFN

PIC18F26K20-E/ML

Manufacturer Part Number
PIC18F26K20-E/ML
Description
IC PIC MCU FLASH 32KX16 28QFN
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr

Specifications of PIC18F26K20-E/ML

Core Size
8-Bit
Program Memory Size
64KB (32K x 16)
Core Processor
PIC
Speed
48MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number Of I /o
24
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
3.8K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 3.6 V
Data Converters
A/D 11x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
28-VQFN Exposed Pad, 28-HVQFN, 28-SQFN, 28-DHVQFN
Controller Family/series
PIC18
No. Of I/o's
25
Eeprom Memory Size
1024Byte
Ram Memory Size
3.84375KB
Cpu Speed
64MHz
No. Of Timers
4
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
3936 B
Interface Type
CCP, ECCP, EUSART, I2C, MSSP, SPI
Maximum Clock Frequency
64 MHz
Number Of Programmable I/os
25
Number Of Timers
4
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, DV164136
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 11 Channel
Package
28QFN EP
Device Core
PIC
Family Name
PIC18
Maximum Speed
64 MHz
Operating Supply Voltage
2.5|3.3 V
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
AC164112 - VOLTAGE LIMITER MPLAB ICD2 VPPAC164322 - MODULE SOCKET MPLAB PM3 28/44QFN
Lead Free Status / Rohs Status
 Details
PIC18F2XK20/4XK20
2.5.3
The Low-Frequency Internal Oscillator (LFINTOSC) is
a 31 kHz internal clock source.
The output of the LFINTOSC connects to internal
oscillator block frequency selection multiplexer (see
Figure 2-1). Select 31 kHz, via software, using the
IRCF<2:0> bits of the OSCCON register and the
INTSRC
Section 2.5.4 “Frequency Select Bits (IRCF)” for
more information. The LFINTOSC is also the frequency
for the Power-up Timer (PWRT), Watchdog Timer
(WDT) and Fail-Safe Clock Monitor (FSCM).
The LFINTOSC is enabled when any of the following
are enabled:
• IRCF<2:0> bits of the OSCCON register = 000 and
• Power-up Timer (PWRT)
• Watchdog Timer (WDT)
• Fail-Safe Clock Monitor (FSCM)
2.5.4
The output of the 16 MHz HFINTOSC and 31 kHz
LFINTOSC connects to a postscaler and multiplexer
(see Figure 2-1). The Internal Oscillator Frequency
Select bits IRCF<2:0> of the OSCCON register select
the output frequency of the internal oscillators. One of
eight frequencies can be selected via software:
• 16 MHz
• 8 MHz
• 4 MHz
• 2 MHz
• 1 MHz (Default after Reset)
• 500 kHz
• 250 kHz
• 31 kHz (LFINTOSC or HFINTOSC/512)
DS41303E-page 32
INTSRC bit of the OSCTUNE register = 0
Note:
bit
LFINTOSC
FREQUENCY SELECT BITS (IRCF)
Following any Reset, the IRCF<2:0> bits of
the OSCCON register are set to ‘011’ and
the frequency selection is set to 1 MHz.
The user can modify the IRCF bits to
select a different frequency.
of
the
OSCTUNE
register.
See
Preliminary
2.5.5
The factory calibrates the internal oscillator block output
(HFINTOSC) for 16 MHz. However, this frequency may
drift as V
controller operation in a variety of ways. It is possible to
adjust the HFINTOSC frequency by modifying the value
of the TUN<5:0> bits in the OSCTUNE register. This has
no effect on the LFINTOSC clock source frequency.
Tuning the HFINTOSC source requires knowing when to
make the adjustment, in which direction it should be
made and in some cases, how large a change is
needed. Three possible compensation techniques are
discussed in the following sections, however other tech-
niques may be used.
2.5.5.1
An adjustment may be required when the USART
begins to generate framing errors or receives data with
errors while in Asynchronous mode. Framing errors
indicate that the device clock frequency is too high; to
adjust for this, decrement the value in OSCTUNE to
reduce the clock frequency. On the other hand, errors
in data may suggest that the clock speed is too low; to
compensate, increment OSCTUNE to increase the
clock frequency.
2.5.5.2
This technique compares device clock speed to some
reference clock. Two timers may be used; one timer is
clocked by the peripheral clock, while the other is
clocked by a fixed reference source, such as the
Timer1 oscillator.
Both timers are cleared, but the timer clocked by the
reference generates interrupts. When an interrupt
occurs, the internally clocked timer is read and both
timers are cleared. If the internally clocked timer value
is greater than expected, then the internal oscillator
block is running too fast. To adjust for this, decrement
the OSCTUNE register.
2.5.5.3
A CCP module can use free running Timer1 (or Timer3),
clocked by the internal oscillator block and an external
event with a known period (i.e., AC power frequency).
The time of the first event is captured in the
CCPRxH:CCPRxL registers and is recorded for use later.
When the second event causes a capture, the time of the
first event is subtracted from the time of the second
event. Since the period of the external event is known,
the time difference between events can be calculated.
If the measured time is much greater than the calcu-
lated time, the internal oscillator block is running too
fast; to compensate, decrement the OSCTUNE register.
If the measured time is much less than the calculated
time, the internal oscillator block is running too slow; to
compensate, increment the OSCTUNE register.
DD
or temperature changes, which can affect the
HFINTOSC FREQUENCY DRIFT
Compensating with the USART
Compensating with the Timers
Compensating with the CCP Module
in Capture Mode
© 2009 Microchip Technology Inc.

Related parts for PIC18F26K20-E/ML