ATMEGA2560V-8AU Atmel, ATMEGA2560V-8AU Datasheet - Page 256

IC AVR MCU 256K 8MHZ 100TQFP

ATMEGA2560V-8AU

Manufacturer Part Number
ATMEGA2560V-8AU
Description
IC AVR MCU 256K 8MHZ 100TQFP
Manufacturer
Atmel
Series
AVR® ATmegar

Specifications of ATMEGA2560V-8AU

Core Processor
AVR
Core Size
8-Bit
Speed
8MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
86
Program Memory Size
256KB (128K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 16x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
100-TQFP, 100-VQFP
Processor Series
ATMEGA256x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
8 KB
Interface Type
2-Wire, SPI, USART
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
86
Number Of Timers
6
Operating Supply Voltage
1.8 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 16 Channel
A/d Inputs
16-Channel, 10-Bit
Cpu Speed
8 MIPS
Eeprom Memory
4K Bytes
Input Output
86
Interface
2-Wire/SPI/USART
Memory Type
Flash
Number Of Bits
8
Package Type
100-pin TQFP
Programmable Memory
256K Bytes
Timers
2-8-bit, 4-16-bit
Voltage, Range
1.8-5.5 V
Package
100TQFP
Device Core
AVR
Family Name
ATmega
Maximum Speed
8 MHz
For Use With
ATSTK600-TQFP100 - STK600 SOCKET/ADAPTER 100-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG770-1005 - ISP 4PORT FOR ATMEL AVR MCU JTAG770-1004 - ISP 4PORT FOR ATMEL AVR MCU SPIATAVRISP2 - PROGRAMMER AVR IN SYSTEMATSTK503 - STARTER KIT AVR EXP MODULE 100PATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEM
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA2560V-8AU
Manufacturer:
Atmel
Quantity:
900
Part Number:
ATMEGA2560V-8AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA2560V-8AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA2560V-8AUR
Manufacturer:
Atmel
Quantity:
10 000
2549M–AVR–09/10
Figure 23-13. Data Transfer in Master Receiver Mode
A START condition is sent by writing the following value to TWCR:
TWEN must be written to one to enable the 2-wire Serial Interface, TWSTA must be written to
one to transmit a START condition and TWINT must be set to clear the TWINT Flag. The TWI
will then test the 2-wire Serial Bus and generate a START condition as soon as the bus
becomes free. After a START condition has been transmitted, the TWINT Flag is set by hard-
ware, and the status code in TWSR will be 0x08 (see
MR mode, SLA+R must be transmitted. This is done by writing SLA+R to TWDR. Thereafter the
TWINT bit should be cleared (by writing it to one) to continue the transfer. This is accomplished
by writing the following value to TWCR:
When SLA+R have been transmitted and an acknowledgement bit has been received, TWINT is
set again and a number of status codes in TWSR are possible. Possible status codes in Master
mode are 0x38, 0x40, or 0x48. The appropriate action to be taken for each of these status codes
is detailed in
when the TWINT Flag is set high by hardware. This scheme is repeated until the last byte has
been received. After the last byte has been received, the MR should inform the ST by sending a
NACK after the last received data byte. The transfer is ended by generating a STOP condition or
a repeated START condition. A STOP condition is generated by writing the following value to
TWCR:
A REPEATED START condition is generated by writing the following value to TWCR:
After a repeated START condition (state 0x10) the 2-wire Serial Interface can access the same
Slave again, or a new Slave without transmitting a STOP condition. Repeated START enables
the Master to switch between Slaves, Master Transmitter mode and Master Receiver mode with-
out losing control over the bus.
TWCR
value
TWCR
value
TWCR
value
TWCR
value
SDA
SCL
Table 23-3 on page
TWINT
TWINT
TWINT
TWINT
1
1
1
1
Device 1
RECEIVER
MASTER
TWEA
TWEA
TWEA
TWEA
X
X
X
X
TRANSMITTER
Device 2
ATmega640/1280/1281/2560/2561
SLAVE
TWSTA
TWSTA
TWSTA
TWSTA
257. Received data can be read from the TWDR Register
1
0
0
1
Device 3
TWSTO
TWSTO
TWSTO
TWSTO
0
0
1
0
........
Table 23-2 on page
TWWC
TWWC
TWWC
TWWC
Device n
X
X
X
X
V
CC
TWEN
TWEN
TWEN
TWEN
1
1
1
1
R1
254). In order to enter
R2
0
0
0
0
TWIE
TWIE
TWIE
TWIE
X
X
X
X
256

Related parts for ATMEGA2560V-8AU