A2F200M3F-1FGG256 Actel, A2F200M3F-1FGG256 Datasheet - Page 52

FPGA - Field Programmable Gate Array 200K System Gates SmartFusion

A2F200M3F-1FGG256

Manufacturer Part Number
A2F200M3F-1FGG256
Description
FPGA - Field Programmable Gate Array 200K System Gates SmartFusion
Manufacturer
Actel
Datasheet

Specifications of A2F200M3F-1FGG256

Processor Series
A2F200
Core
ARM Cortex M3
Number Of Logic Blocks
8
Maximum Operating Frequency
120 MHz
Number Of Programmable I/os
117
Data Ram Size
4608 bit
Delay Time
200 ns
Supply Voltage (max)
3.6 V
Supply Current
3 mA
Maximum Operating Temperature
+ 85 C
Minimum Operating Temperature
0 C
3rd Party Development Tools
MDK-ARM, RL-ARM, ULINK2
Development Tools By Supplier
A2F-Eval-Kit, A2F-Dev-Kit, FlashPro 3, FlashPro Lite, Silicon-Explorer II, Silicon-Sculptor 3, SI-EX-TCA
Mounting Style
SMD/SMT
Supply Voltage (min)
1.425 V
Number Of Gates
200000
Package / Case
FPBGA-256
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
A2F200M3F-1FGG256
Manufacturer:
ACT
Quantity:
36
Part Number:
A2F200M3F-1FGG256
Manufacturer:
Microsemi SoC
Quantity:
10 000
Part Number:
A2F200M3F-1FGG256I
Manufacturer:
Microsemi SoC
Quantity:
10 000
SmartFusion DC and Switching Characteristics
Figure 2-11 • LVDS Circuit Diagram and Board-Level Implementation
2- 40
OUTBUF_LVDS
Differential I/O Characteristics
Physical Implementation
Configuration of the I/O modules as a differential pair is handled by SoC Products Group Designer
software when the user instantiates a differential I/O macro in the design.
Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output
Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no
support for bidirectional I/Os or tristates with the LVPECL standards.
LVDS
Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It
requires that one data bit be carried through two signal lines, so two pins are needed. It also requires
external resistor termination.
The full implementation of the LVDS transmitter and receiver is shown in an example in
building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three
board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver
resistors are different from those used in the LVPECL implementation because the output standard
specifications are different.
Along with LVDS I/O, SmartFusion also supports Bus LVDS structure and Multipoint LVDS (M-LVDS)
configuration (up to 40 nodes).
FPGA
P
N
Bourns Part Number: CAT16-LV4F12
165 Ω
165 Ω
140 Ω
R e visio n 6
Z
Z
0
0
= 50 Ω
= 50 Ω
100 Ω
N
P
FPGA
+
Figure
INBUF_LVDS
2-11. The

Related parts for A2F200M3F-1FGG256