ATtiny26 Atmel Corporation, ATtiny26 Datasheet - Page 8

no-image

ATtiny26

Manufacturer Part Number
ATtiny26
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATtiny26

Flash (kbytes)
2 Kbytes
Pin Count
20
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
Hardware Qtouch Acquisition
No
Max I/o Pins
16
Ext Interrupts
11
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
11
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
0.12
Eeprom (bytes)
128
Self Program Memory
NO
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
3
Pwm Channels
4
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATTINY26
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny26-16MI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny26-16MU
Manufacturer:
ATMEL
Quantity:
7 119
Part Number:
ATtiny26-16SC
Manufacturer:
MITEL
Quantity:
20 000
Part Number:
ATtiny26-16SI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny26-16SU
Manufacturer:
ATMEL
Quantity:
8 000
Part Number:
ATtiny26-16SU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny26-8PI
Manufacturer:
UTC
Quantity:
15
Part Number:
ATtiny26-8SI
Manufacturer:
INTEL
Quantity:
8
Part Number:
ATtiny26-8SU
Manufacturer:
ATMTLL
Quantity:
5 510
Part Number:
ATtiny26-8SU
Manufacturer:
SIEMENS
Quantity:
5 510
General Purpose
Register File
8
ATtiny26(L)
concept enables instructions to be executed in every clock cycle. The program memory is In-
System programmable Flash memory.
With the relative jump and relative call instructions, the whole address space is directly
accessed. All AVR instructions have a single 16-bit word format, meaning that every program
memory address contains a single 16-bit instruction.
During interrupts and subroutine calls, the return address program counter (PC) is stored on the
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the stack
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must
initialize the SP in the reset routine (before subroutines or interrupts are executed). The 8-bit
Stack Pointer SP is read/write accessible in the I/O space. For programs written in C, the stack
size must be declared in the linker file. Refer to the C user guide for more information.
The 128 bytes data SRAM can be easily accessed through the five different addressing modes
supported in the AVR architecture.
The memory spaces in the AVR architecture are all linear and regular memory maps.
The I/O memory space contains 64 addresses for CPU peripheral functions as Control Regis-
ters, Timer/Counters, and other I/O functions. The memory spaces in the AVR architecture are
all linear and regular memory maps.
A flexible interrupt module has its control registers in the I/O space with an additional Global
Interrupt Enable bit in the Status Register. All the different interrupts have a separate Interrupt
Vector in the Interrupt Vector table at the beginning of the program memory. The different inter-
rupts have priority in accordance with their Interrupt Vector position. The lower the Interrupt
Vector address, the higher the priority.
Figure 3 shows the structure of the 32 general purpose working registers in the CPU.
Figure 3. AVR CPU General Purpose Working Registers
Registers
Purpose
Working
General
7
R13
R14
R15
R16
R17
R26
R27
R28
R29
R30
R31
R0
R1
R2
0
Addr.
$0D
$0E
$0F
$1A
$1B
$1C
$1D
$1E
$1F
$00
$01
$02
$10
$11
X-register High Byte
Y-register High Byte
Z-register High Byte
X-register Low Byte
Y-register Low Byte
Z-register Low Byte
1477K–AVR–08/10

Related parts for ATtiny26