DSPIC30F3011 Microchip Technology Inc., DSPIC30F3011 Datasheet - Page 128

no-image

DSPIC30F3011

Manufacturer Part Number
DSPIC30F3011
Description
Dspic30f3010/3011 Enhanced Flash 16-bit Digital Signal Controller
Manufacturer
Microchip Technology Inc.
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F3011-20E/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F3011-20I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F3011-30I/ML
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
DSPIC30F3011-30I/P
Manufacturer:
Microchip
Quantity:
927
Part Number:
DSPIC30F3011-30I/PT
Manufacturer:
MICROCHIP
Quantity:
316
Part Number:
DSPIC30F3011-30I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F3011-30I/PT
Manufacturer:
MICROCHI
Quantity:
20 000
Part Number:
DSPIC30F3011-30I/PT
0
Part Number:
DSPIC30F3011T-20E/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F3011T-20I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F3011T-30I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
DSPIC30F3011T-30I/PT
0
dsPIC30F3010/3011
19.4
The conversion trigger will terminate acquisition and
start the requested conversions.
The SSRC<2:0> bits select the source of the
conversion trigger.
The SSRC bits provide for up to 5 alternate sources of
conversion trigger.
When SSRC<2:0> = 000, the conversion trigger is
under software control. Clearing the SAMP bit will
cause the conversion trigger.
When SSRC<2:0> = 111
conversion trigger is under A/D clock control. The
SAMC bits select the number of A/D clocks between
the start of acquisition and the start of conversion. This
provides the fastest conversion rates on multiple
channels. SAMC must always be at least 1 clock cycle.
Other trigger sources can come from timer modules,
Motor Control PWM module, or external interrupts.
19.5
Clearing the ADON bit during a conversion will abort
the current conversion and stop the sampling sequenc-
ing. The ADCBUF will not be updated with the partially
completed A/D conversion sample. That is, the
ADCBUF will continue to contain the value of the last
completed conversion (or the last value written to the
ADCBUF register).
If the clearing of the ADON bit coincides with an auto
start, the clearing has a higher priority.
After the A/D conversion is aborted, a 2 T
required before the next sampling may be started by
setting the SAMP bit.
If sequential sampling is specified, the A/D will continue
at the next sample pulse which corresponds with the
next channel converted. If simultaneous sampling is
specified, the A/D will continue with the next
multi-channel group conversion sequence.
DS70141D-page 126
Note:
Programming the Start of
Conversion Trigger
Aborting a Conversion
To operate the A/D at the maximum
specified conversion speed, the Auto
Convert Trigger option should be selected
(SSRC = 111) and the Auto Sample Time
bits should be set to 1 T
00001). This configuration will give a total
conversion period (sample + convert) of
13 T
The use of any other conversion trigger
will result in additional T
synchronize the external event to the A/D.
AD
.
(Auto Start mode), the
AD
AD
(SAMC =
cycles to
AD
wait is
Confidential
19.6
The A/D conversion requires 12 T
A/D conversion clock is software selected using a six
bit counter. There are 64 possible options for T
EQUATION 19-1:
The internal RC oscillator is selected by setting the
ADRC bit.
For correct A/D conversions, the A/D conversion clock
(T
of 83.33 nsec (for V
"Electrical Characteristics" for minimum T
other operating conditions.
Example 19-1 shows a sample calculation for the
ADCS<5:0> bits, assuming a device operating speed
of 30 MIPS.
EXAMPLE 19-1:
AD
) must be selected to ensure a minimum T
Therefore,
Set ADCS<5:0> = 9
Selecting the A/D Conversion
Clock
T
ADCS<5:0> = 2
Actual T
AD
= T
ADCS<5:0> = 2
CY
AD
T
T
DD
* (0.5 * (ADCS<5:0> + 1))
AD
CY
= 2 •
= 8.33
=
=
= 165 nsec
= 5V). Refer to the Section 23.0
A/D CONVERSION CLOCK
A/D CONVERSION CLOCK
CALCULATION
= 33 nsec (30 MIPS)
= 154 nsec
© 2007 Microchip Technology Inc.
T
33 nsec
T
T
CY
2
AD
CY
154 nsec
2
33 nsec
(ADCS<5:0> + 1)
T
T
– 1
AD
CY
AD
(9 + 1)
. The source of the
– 1
– 1
AD
AD
AD
under
.
time

Related parts for DSPIC30F3011