DSPIC30F3011 Microchip Technology Inc., DSPIC30F3011 Datasheet - Page 20

no-image

DSPIC30F3011

Manufacturer Part Number
DSPIC30F3011
Description
Dspic30f3010/3011 Enhanced Flash 16-bit Digital Signal Controller
Manufacturer
Microchip Technology Inc.
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F3011-20E/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F3011-20I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F3011-30I/ML
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
DSPIC30F3011-30I/P
Manufacturer:
Microchip
Quantity:
927
Part Number:
DSPIC30F3011-30I/PT
Manufacturer:
MICROCHIP
Quantity:
316
Part Number:
DSPIC30F3011-30I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F3011-30I/PT
Manufacturer:
MICROCHI
Quantity:
20 000
Part Number:
DSPIC30F3011-30I/PT
0
Part Number:
DSPIC30F3011T-20E/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F3011T-20I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F3011T-30I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
DSPIC30F3011T-30I/PT
0
inherent accumulator-to-accumulator operations, which
dsPIC30F3010/3011
2.3
The dsPIC DSC devices feature a 16/16-bit signed
fractional divide operation, as well as 32/16-bit and 16/
16-bit signed and unsigned integer divide operations, in
the form of single instruction iterative divides. The fol-
lowing instructions and data sizes are supported:
1.
2.
3.
4.
5.
TABLE 2-1:
2.4
The DSP engine consists of a high-speed 17-bit x
17-bit multiplier, a barrel shifter, and a 40-bit adder/sub-
tracter (with two target accumulators, round and
saturation logic).
The dsPIC30F devices have a single instruction flow
which can execute either DSP or MCU instructions.
Many of the hardware resources are shared between
the DSP and MCU instructions. For example, the
instruction set has both DSP and MCU multiply
instructions which use the same hardware multiplier.
The DSP engine also has the capability to perform
require no additional data. These instructions are ADD,
SUB and NEG.
The DSP engine has various options selected through
various bits in the CPU Core Configuration register
(CORCON), as listed below:
1.
2.
3.
4.
5.
6.
7.
DS70141D-page 18
DIVF
DIV.sd
DIV.sw
DIV.ud
DIV.uw
DIVF – 16/16 signed fractional divide
DIV.sd – 32/16 signed divide
DIV.ud – 32/16 unsigned divide
DIV.sw – 16/16 signed divide
DIV.uw – 16/16 unsigned divide
Fractional or integer DSP multiply (IF).
Signed or unsigned DSP multiply (US).
Conventional or convergent rounding (RND).
Automatic saturation on/off for ACCA (SATA).
Automatic saturation on/off for ACCB (SATB).
Automatic saturation on/off for writes to data
memory (SATDW).
Accumulator
(ACCSAT).
Divide Support
DSP Engine
Instruction
DIVIDE INSTRUCTIONS
Saturation
mode
Signed fractional divide: Wm/Wn → W0; Rem → W1
Signed divide: (Wm + 1:Wm)/Wn → W0; Rem → W1
Signed divide: Wm/Wn → W0; Rem → W1
Unsigned divide: (Wm + 1:Wm)/Wn → W0; Rem → W1
Unsigned divide: Wm/Wn → W0; Rem → W1
selection
Confidential
The divide instructions must be executed within a
REPEAT loop. Any other form of execution (e.g. a series
of discrete divide instructions) will not function correctly
because the instruction flow depends on RCOUNT. The
divide instruction does not automatically set up the
RCOUNT value, and it must, therefore, be explicitly and
correctly specified in the REPEAT instruction, as shown
in Table 2-1 (REPEAT will execute the target instruction
{operand value + 1} times). The REPEAT loop count
must be set up for 18 iterations of the DIV/DIVF instruc-
tion. Thus, a complete divide operation requires 19
cycles.
A block diagram of the DSP engine is shown in
Figure 2-2.
TABLE 2-2:
Note:
Instruction
MOVSAC
MPY.N
EDAC
CLR
MAC
MPY
MSC
ED
Function
The divide flow is interruptible. However,
the user needs to save the context as
appropriate.
DSP INSTRUCTION
SUMMARY
© 2007 Microchip Technology Inc.
Algebraic Operation
A = 0
A = (x – y)
A = A + (x – y)
A = A + (x * y)
No change in A
A = x * y
A = – x * y
A = A – x * y
2
2

Related parts for DSPIC30F3011