PIC18LF6310-I/PT Microchip Technology, PIC18LF6310-I/PT Datasheet - Page 260

IC PIC MCU FLASH 4KX16 64TQFP

PIC18LF6310-I/PT

Manufacturer Part Number
PIC18LF6310-I/PT
Description
IC PIC MCU FLASH 4KX16 64TQFP
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18LF6310-I/PT

Core Size
8-Bit
Program Memory Size
8KB (4K x 16)
Oscillator Type
Internal
Core Processor
PIC
Speed
40MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number Of I /o
54
Program Memory Type
FLASH
Ram Size
768 x 8
Voltage - Supply (vcc/vdd)
2 V ~ 5.5 V
Data Converters
A/D 12x10b
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TFQFP
Controller Family/series
PIC18
No. Of I/o's
54
Ram Memory Size
768Byte
Cpu Speed
40MHz
No. Of Timers
4
No. Of Pwm
RoHS Compliant
Rohs Compliant
Yes
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18LF6310-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
PIC18F6310/6410/8310/8410
20.1
For the A/D Converter to meet its specified accuracy,
the charge holding capacitor (C
to fully charge to the input channel voltage level. The
analog input model is shown in
source impedance (R
switch (R
required to charge the capacitor, C
switch (R
(V
at the analog input (due to pin leakage current). The
maximum recommended impedance for analog
sources is 2.5 k. After the analog input channel is
selected (changed), the channel must be sampled for
at least the minimum acquisition time before starting a
conversion.
EQUATION 20-1:
EQUATION 20-2:
EQUATION 20-3:
DS39635C-page 260
T
V
or
T
T
T
T
Temperature coefficient is only required for temperatures > 25C. Below 25C, T
T
T
ACQ
DD
Note:
C
ACQ
AMP
COFF
C
ACQ
HOLD
). The source impedance affects the offset voltage
=
=
A/D Acquisition Requirements
SS
=
=
=
=
=
SS
=
=
) impedance varies over the device voltage
When the conversion is started, the
holding capacitor is disconnected from the
input pin.
Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
T
) impedance directly affect the time
AMP
T
0.2 s
(Temp – 25C)(0.02 s/C)
(85C – 25C)(0.02 s/C)
1.2 s
-(C
-(25 pF) (1 k + 2 k + 2.5 k) ln(0.0004883)
1.05 s
0.2 s + 1 s + 1.2 s
2.4 s
(V
-(C
AMP
HOLD
+ T
REF
HOLD
+ T
C
– (V
ACQUISITION TIME
A/D MINIMUM CHARGING TIME
CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME
S
+ T
)(R
C
) and the internal sampling
)(R
+ T
REF
COFF
IC
IC
+ R
COFF
/2048)) • (1 – e
+ R
HOLD
SS
SS
HOLD
+ R
+ R
) must be allowed
Figure
S
S
) ln(1/2047)
. The sampling
) ln(1/2048)
(-T
20-3. The
C
/C
HOLD
(R
IC
+ R
SS
+ R
S
To
Equation 20-1
that 1/2 LSb error is used (1024 steps for the A/D). The
1/2 LSb error is the maximum error allowed for the A/D
to meet its specified resolution.
Example 20-3
required acquisition time, T
based
assumptions:
C
Rs
Conversion Error
V
Temperature
))
HOLD
DD
)
calculate
on
COFF
shows the calculation of the minimum
the
may be used. This equation assumes
= 0 ms.
the
=
=
=
=
following
minimum
 2010 Microchip Technology Inc.
25 pF
2.5 k
1/2 LSb
5V  Rss = 2 k
85C (system max.)
ACQ
. This calculation is
application
acquisition
system
time,

Related parts for PIC18LF6310-I/PT