ATMEGA3250-16AUR Atmel, ATMEGA3250-16AUR Datasheet - Page 21

no-image

ATMEGA3250-16AUR

Manufacturer Part Number
ATMEGA3250-16AUR
Description
MCU AVR 32K FLASH 16MHZ 100TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheet

Specifications of ATMEGA3250-16AUR

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
SPI, UART/USART, USI
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
69
Program Memory Size
32KB (16K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
*
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA3250-16AUR
Manufacturer:
Atmel
Quantity:
10 000
7.3.3
7.4
7.4.1
2570M–AVR–04/11
I/O Memory
Preventing EEPROM Corruption
General Purpose I/O Registers
consequence, the device does not enter Power-down entirely. It is therefore recommended to
verify that the EEPROM write operation is completed before entering Power-down.
During periods of low V
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.
An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.
EEPROM data corruption can easily be avoided by following this design recommendation:
Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can
be done by enabling the internal Brown-out Detector (BOD). If the detection level of the internal
BOD does not match the needed detection level, an external low V
be used. If a reset occurs while a write operation is in progress, the write operation will be com-
pleted provided that the power supply voltage is sufficient.
The I/O space definition of the Atmel ATmega325/3250/645/6450 is shown in
mary” on page
All Atmel ATmega325/3250/645/6450 I/Os and peripherals are placed in the I/O space. All I/O
locations may be accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data
between the 32 general purpose working registers and the I/O space. I/O Registers within the
address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In
these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
Refer to the instruction set section for more details. When using the I/O specific commands IN
and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O Registers as data
space using LD and ST instructions, 0x20 must be added to these addresses. The Atmel
ATmega325/3250/645/6450 is a complex microcontroller with more peripheral units than can be
supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the
Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instruc-
tions can be used.
For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.
Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most
other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore
be used on registers containing such Status Flags. The CBI and SBI instructions work with reg-
isters 0x00 to 0x1F only.
The I/O and peripherals control registers are explained in later sections.
The Atmel ATmega325/3250/645/6450 contains three General Purpose I/O Registers. These
registers can be used for storing any information, and they are particularly useful for storing
global variables and Status Flags. General Purpose I/O Registers within the address range 0x00
- 0x1F are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.
336.
CC,
the EEPROM data can be corrupted because the supply voltage is
ATmega325/3250/645/6450
CC
reset Protection circuit can
“Register Sum-
21

Related parts for ATMEGA3250-16AUR