ATMEGA640-16CU Atmel, ATMEGA640-16CU Datasheet - Page 16

IC MCU AVR 64K FLASH 100-CBGA

ATMEGA640-16CU

Manufacturer Part Number
ATMEGA640-16CU
Description
IC MCU AVR 64K FLASH 100-CBGA
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA640-16CU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
86
Program Memory Size
64KB (32K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 16x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
100-TFBGA
Processor Series
ATMEGA64x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
8 KB
Interface Type
2-Wire, SPI, USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
86
Number Of Timers
6
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 16 Channel
For Use With
ATSTK600-TQFP100 - STK600 SOCKET/ADAPTER 100-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATAVRISP2 - PROGRAMMER AVR IN SYSTEMATSTK503 - STARTER KIT AVR EXP MODULE 100P
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA640-16CU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA640-16CUR
Manufacturer:
Atmel
Quantity:
10 000
6.6
2549M–AVR–09/10
Stack Pointer
Figure 6-3.
In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the instruction set reference for details).
The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points
to the top of the Stack. Note that the Stack is implemented as growing from higher memory loca-
tions to lower memory locations. This implies that a Stack PUSH command decreases the Stack
Pointer.
The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program before
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to
point above 0x0200. The initial value of the stack pointer is the last address of the internal
SRAM. The Stack Pointer is decremented by one when data is pushed onto the Stack with the
PUSH instruction, and it is decremented by two for ATmega640/1280/1281 and three for
ATmega2560/2561 when the return address is pushed onto the Stack with subroutine call or
interrupt. The Stack Pointer is incremented by one when data is popped from the Stack with the
POP instruction, and it is incremented by two for ATmega640/1280/1281 and three for
ATmega2560/2561 when data is popped from the Stack with return from subroutine RET or
return from interrupt RETI.
The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register
will not be present.
X-register
Y-register
Z-register
Bit
0x3E (0x5E)
0x3D (0x5D)
Read/Write
Initial Value
The X-, Y-, and Z-registers
SP15
SP7
R/W
R/W
15
7
0
1
15
7
R27 (0x1B)
15
7
R29 (0x1D)
15
7
R31 (0x1F)
SP14
SP6
R/W
R/W
14
6
0
1
SP13
SP5
R/W
R/W
ATmega640/1280/1281/2560/2561
13
5
1
1
XH
YH
ZH
0
SP12
R/W
R/W
SP4
12
4
0
1
SP11
R/W
R/W
SP3
11
3
0
1
0
0
7
R26 (0x1A)
7
R28 (0x1C)
7
R30 (0x1E)
SP10
SP2
R/W
R/W
10
2
0
1
SP9
SP1
R/W
R/W
9
1
0
1
XL
YL
ZL
0
SP8
SP0
R/W
R/W
8
0
1
1
SPH
SPL
0
0
0
0
0
16

Related parts for ATMEGA640-16CU