IC MCU OTP 8BIT 1K 20DIP

COP8SAA720N9

Manufacturer Part NumberCOP8SAA720N9
DescriptionIC MCU OTP 8BIT 1K 20DIP
ManufacturerNational Semiconductor
SeriesCOP8™ 8SA
COP8SAA720N9 datasheet
 


Specifications of COP8SAA720N9

Core ProcessorCOP8Core Size8-Bit
Speed10MHzConnectivityMicrowire/Plus (SPI)
PeripheralsPOR, PWM, WDTNumber Of I /o16
Program Memory Size1KB (1K x 8)Program Memory TypeOTP
Ram Size64 x 8Voltage - Supply (vcc/vdd)2.7 V ~ 5.5 V
Oscillator TypeInternalOperating Temperature0°C ~ 70°C
Package / Case20-DIP (0.300", 7.62mm)Lead Free Status / RoHS StatusContains lead / RoHS non-compliant
Eeprom Size-Data Converters-
Other names*COP8SAA720N9
COP8SAA720N9B
COP8SAA720NB
  
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Page 31
32
Page 32
33
Page 33
34
Page 34
35
Page 35
36
Page 36
37
Page 37
38
Page 38
39
Page 39
40
Page 40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 35/60

Download datasheet (777Kb)Embed
PrevNext
10.0 WATCHDOG/Clock Monitor
Key
Window
Data
Data
Match
Match
Don’t Care
Mismatch
Mismatch
Don’t Care
Don’t Care
Don’t Care
10.3 WATCHDOG AND CLOCK MONITOR SUMMARY
The following salient points regarding the WATCHDOG and
CLOCK MONITOR should be noted:
• Both the WATCHDOG and CLOCK MONITOR detector
circuits are inhibited during RESET.
• Following RESET, the WATCHDOG and CLOCK MONI-
TOR are both enabled, with the WATCHDOG having the
maximum service window selected.
• The WATCHDOG service window and CLOCK MONI-
TOR enable/disable option can only be changed once,
during the initial WATCHDOG service following RESET.
• The initial WATCHDOG service must match the key data
value in the WATCHDOG Service register WDSVR in
order to avoid a WATCHDOG error.
• Subsequent WATCHDOG services must match all three
data fields in WDSVR in order to avoid WATCHDOG
errors.
• The correct key data value cannot be read from the
WATCHDOG Service register WDSVR. Any attempt to
read this key data value of 01100 from WDSVR will read
as key data value of all 0’s.
• The WATCHDOG detector circuit is inhibited during both
the HALT and IDLE modes.
• The CLOCK MONITOR detector circuit is active during
both the HALT and IDLE modes. Consequently, the de-
vice inadvertently entering the HALT mode will be de-
tected as a CLOCK MONITOR error (provided that the
CLOCK MONITOR enable option has been selected by
the program).
• With the single-pin R/C oscillator option selected and the
CLKDLY bit reset, the WATCHDOG service window will
resume following HALT mode from where it left off before
entering the HALT mode.
• With the crystal oscillator option selected, or with the
single-pin R/C oscillator option selected and the CLKDLY
bit set, the WATCHDOG service window will be set to its
selected value from WDSVR following HALT. Conse-
quently, the WATCHDOG should not be serviced for at
least 256 instruction cycles following HALT, but must be
serviced within the selected window to avoid a WATCH-
DOG error.
• The IDLE timer T0 is not initialized with external RESET.
• The user can sync in to the IDLE counter cycle with an
IDLE counter (T0) interrupt or by monitoring the T0PND
flag. The T0PND flag is set whenever the twelfth bit of the
IDLE counter toggles (every 4096 instruction cycles). The
user is responsible for resetting the T0PND flag.
(Continued)
TABLE 8. WATCHDOG Service Actions
Clock
Monitor
Match
Valid Service: Restart Service Window
Don’t Care
Error: Generate WATCHDOG Output
Don’t Care
Error: Generate WATCHDOG Output
Mismatch
Error: Generate WATCHDOG Output
• A hardware WATCHDOG service occurs just as the de-
vice exits the IDLE mode. Consequently, the WATCH-
DOG should not be serviced for at least 256 instruction
cycles following IDLE, but must be serviced within the
selected window to avoid a WATCHDOG error.
• Following RESET, the initial WATCHDOG service (where
the service window and the CLOCK MONITOR enable/
disable must be selected) may be programmed any-
where within the maximum service window (65,536 in-
struction cycles) initialized by RESET. Note that this initial
WATCHDOG service may be programmed within the ini-
tial 256 instruction cycles without causing a WATCHDOG
error.
• In order to RESET the device on the occurrence of a
WATCH event, the user must connect the WDOUT pin
(G1) pin to the RESET external to the device. The weak
pull-up on the WDOUT pin is sufficient to provide the
RESET connection to V
Power On Reset and WATCHDOG.
10.4 DETECTION OF ILLEGAL CONDITIONS
The device can detect various illegal conditions resulting
from coding errors, transient noise, power supply voltage
drops, runaway programs, etc.
Reading of undefined ROM gets zeroes. The opcode for
software interrupt is 00. If the program fetches instructions
from undefined ROM, this will force a software interrupt, thus
signaling that an illegal condition has occurred.
The subroutine stack grows down for each call (jump to
subroutine), interrupt, or PUSH, and grows up for each
return or POP. The stack pointer is initialized to RAM location
06F Hex during reset. Consequently, if there are more re-
turns than calls, the stack pointer will point to addresses 070
and 071 Hex (which are undefined RAM). Undefined RAM
from addresses 070 to 07F (Segment 0), and all other seg-
ments (i.e., Segments 4 … etc.) is read as all 1’s, which in
turn will cause the program to return to address 7FFF Hex.
This is an undefined ROM location and the instruction
fetched (all 0’s) from this location will generate a software
interrupt signaling an illegal condition.
Thus, the chip can detect the following illegal conditions:
1. Executing from undefined ROM
2. Over “POP”ing the stack by having more returns than
calls.
When the software interrupt occurs, the user can re-initialize
the stack pointer and do a recovery procedure before restart-
ing (this recovery program is probably similar to that follow-
ing reset, but might not contain the same program initializa-
tion procedures). The recovery program should reset the
software interrupt pending bit using the RPND instruction.
35
Action
for devices which use both
CC
www.national.com