ISL6316IRZ-T Intersil, ISL6316IRZ-T Datasheet - Page 12

IC CTRLR PWM 4PHASE ENH 40-QFN

ISL6316IRZ-T

Manufacturer Part Number
ISL6316IRZ-T
Description
IC CTRLR PWM 4PHASE ENH 40-QFN
Manufacturer
Intersil
Datasheet

Specifications of ISL6316IRZ-T

Pwm Type
Voltage Mode
Number Of Outputs
1
Frequency - Max
275kHz
Duty Cycle
66.7%
Voltage - Supply
4.75 V ~ 5.25 V
Buck
Yes
Boost
No
Flyback
No
Inverting
No
Doubler
No
Divider
No
Cuk
No
Isolated
No
Operating Temperature
-40°C ~ 85°C
Package / Case
40-VFQFN, 40-VFQFPN
Frequency-max
275kHz
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Interleaving
The switching of each channel in a multiphase converter is
timed to be symmetrically out of phase with each of the other
channels. In a 3-phase converter, each channel switches 1/3
cycle after the previous channel and 1/3 cycle before the
following channel. As a result, the three-phase converter has
a combined ripple frequency three times greater than the
ripple frequency of any one phase. In addition, the peak-to-
peak amplitude of the combined inductor currents is reduced
in proportion to the number of phases (Equations 1 and 2).
Increased ripple frequency and lower ripple amplitude mean
that the designer can use less per-channel inductance and
lower total output capacitance for any performance
specification.
Figure 1 illustrates the multiplicative effect on output ripple
frequency. The three channel currents (IL1, IL2, and IL3)
combine to form the AC ripple current and the DC load
current. The ripple component has three times the ripple
frequency of each individual channel current. Each PWM
pulse is terminated 1/3 of a cycle after the PWM pulse of the
previous phase. The peak-to-peak current for each phase is
about 7A, and the DC components of the inductor currents
combine to feed the load.
To understand the reduction of ripple current amplitude in the
multiphase circuit, examine the equation representing an
individual channel’s peak-to-peak inductor current.
In Equation 1, V
voltages respectively, L is the single-channel inductor value,
and f
I
P-P
FIGURE 1. PWM AND INDUCTOR-CURRENT WAVEFORMS
=
S
is the switching frequency.
(
----------------------------------------------------- -
V
PWM3, 5V/DIV
IN
L f
IL1 + IL2 + IL3, 7A/DIV
V
FOR 3-PHASE CONVERTER
OUT
S
IN
V
IL3, 7A/DIV
IN
and V
) V
OUT
PWM1, 5V/DIV
OUT
12
are the input and output
1µs/DIV
IL1, 7A/DIV
PWM2, 5V/DIV
IL2, 7A/DIV
(EQ. 1)
ISL6316
The output capacitors conduct the ripple component of the
inductor current. In the case of multiphase converters, the
capacitor current is the sum of the ripple currents from each of
the individual channels. Compare Equation 1 to the
expression for the peak-to-peak current after the summation
of N symmetrically phase-shifted inductor currents in
Equation 2. Peak-to-peak ripple current decreases by an
amount proportional to the number of channels. Output-
voltage ripple is a function of capacitance, capacitor
equivalent series resistance (ESR), and inductor ripple
current. Reducing the inductor ripple current allows the
designer to use fewer or less costly output capacitors.
Another benefit of interleaving is to reduce input ripple current.
Input capacitance is determined in part by the maximum input
ripple current. Multiphase topologies can improve overall
system cost and size by lowering input ripple current and
allowing the designer to reduce the cost of input capacitance.
The example in Figure 2 illustrates input currents from a three-
phase converter combining to reduce the total input ripple
current.
The converter depicted in Figure 2 delivers 36A to a 1.5V load
from a 12V input. The RMS input capacitor current is 5.9A.
Compare this to a single-phase converter also stepping down
12V to 1.5V at 36A. The single-phase converter has 11.9A
RMS input capacitor current. The single-phase converter
must use an input capacitor bank with twice the RMS current
capacity as the equivalent three-phase converter.
Figures 22, 21 and 23 in the section entitled Input Capacitor
Selection can be used to determine the input-capacitor RMS
current based on load current, duty cycle, and the number of
channels. They are provided as aids in determining the
optimal input capacitor solution. Figure 24 shows the single
phase input-capacitor RMS current for comparison.
I
C P-P
,
FIGURE 2. CHANNEL INPUT CURRENTS AND INPUT-
=
(
----------------------------------------------------------- -
INPUT-CAPACITOR CURRENT, 10A/DIV
V
IN
CAPACITOR RMS CURRENT FOR 3-PHASE
CONVERTER
N V
CHANNEL 3
INPUT CURRENT
10A/DIV
L f
S
OUT
V
IN
CHANNEL 2
INPUT CURRENT
10A/DIV
) V
OUT
CHANNEL 1
INPUT CURRENT
10A/DIV
1µs/DIV
December 12, 2006
(EQ. 2)
FN9227.1

Related parts for ISL6316IRZ-T