PIC18F1230-I/SO Microchip Technology, PIC18F1230-I/SO Datasheet - Page 157

IC PIC MCU FLASH 2KX16 18SOIC

PIC18F1230-I/SO

Manufacturer Part Number
PIC18F1230-I/SO
Description
IC PIC MCU FLASH 2KX16 18SOIC
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F1230-I/SO

Core Size
8-Bit
Program Memory Size
4KB (2K x 16)
Core Processor
PIC
Speed
40MHz
Connectivity
UART/USART
Peripherals
Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number Of I /o
16
Program Memory Type
FLASH
Eeprom Size
128 x 8
Ram Size
256 x 8
Voltage - Supply (vcc/vdd)
4.2 V ~ 5.5 V
Data Converters
A/D 4x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
18-SOIC (7.5mm Width)
Controller Family/series
PIC18
No. Of I/o's
16
Eeprom Memory Size
128Byte
Ram Memory Size
256Byte
Cpu Speed
40MHz
No. Of Timers
2
Package
18SOIC W
Device Core
PIC
Family Name
PIC18
Maximum Speed
40 MHz
Operating Supply Voltage
5 V
Data Bus Width
8 Bit
Number Of Programmable I/os
16
Interface Type
USART
On-chip Adc
4-chx10-bit
Number Of Timers
2
Processor Series
PIC18F
Core
PIC
Data Ram Size
256 B
Maximum Clock Frequency
40 MHz
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, DV164136
Minimum Operating Temperature
- 40 C
Height
2.31 mm
Length
11.53 mm
Supply Voltage (max)
5.5 V
Supply Voltage (min)
4.2 V
Width
7.49 mm
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F1230-I/SO
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
15.2
The Asynchronous mode of operation is selected by
clearing the SYNC bit (TXSTA<4>). In this mode, the
EUSART uses standard Non-Return-to-Zero (NRZ)
format (one Start bit, eight or nine data bits and one
Stop bit). The most common data format is 8 bits. An
on-chip dedicated 8-bit/16-bit Baud Rate Generator
can be used to derive standard baud rate frequencies
from the oscillator.
The EUSART transmits and receives the LSb first. The
EUSART’s transmitter and receiver are functionally
independent but use the same data format and baud
rate. The Baud Rate Generator produces a clock, either
x16 or x64 of the bit shift rate depending on the BRGH
and BRG16 bits (TXSTA<2> and BAUDCON<3>). Par-
ity is not supported by the hardware but can be
implemented in software and stored as the 9th data bit.
In Asynchronous mode, clock polarity is selected with
the TXCKP bit (BAUDCON<4>). Setting TXCKP sets
the Idle state on CK as high, while clearing the bit sets
the Idle state as low. Data polarity is selected with the
RXDTP bit (BAUDCON<5>).
Setting RXDTP inverts data on RX, while clearing the bit
has no affect on received data.
When operating in Asynchronous mode, the EUSART
module consists of the following important elements:
• Baud Rate Generator
• Sampling Circuit
• Asynchronous Transmitter
• Asynchronous Receiver
• Auto-Wake-up on Sync Break Character
• 12-Bit Break Character Transmit
• Auto-Baud Rate Detection
 2009 Microchip Technology Inc.
EUSART Asynchronous Mode
15.2.1
The EUSART transmitter block diagram is shown in
Figure 15-3. The heart of the transmitter is the Transmit
(Serial) Shift Register (TSR). The Shift register obtains
its data from the Read/Write Transmit Buffer register,
TXREG. The TXREG register is loaded with data in
software. The TSR register is not loaded until the Stop
bit has been transmitted from the previous load. As
soon as the Stop bit is transmitted, the TSR is loaded
with new data from the TXREG register (if available).
Once the TXREG register transfers the data to the TSR
register (occurs in one T
and the TXIF flag bit (PIR1<4>) is set. This interrupt can
be enabled or disabled by setting or clearing the interrupt
enable bit, TXIE (PIE1<4>). TXIF will be set regardless of
the state of TXIE; it cannot be cleared in software. TXIF
is also not cleared immediately upon loading TXREG but
becomes valid in the second instruction cycle following
the load instruction. Polling TXIF immediately following a
load of TXREG will return invalid results.
While TXIF indicates the status of the TXREG register,
another bit, TRMT (TXSTA<1>), shows the status of
the TSR register. TRMT is a read-only bit which is set
when the TSR register is empty. No interrupt logic is
tied to this bit so the user has to poll this bit in order to
determine if the TSR register is empty.
To set up an Asynchronous Transmission:
1.
2.
3.
4.
5.
6.
7.
8.
Note 1: The TSR register is not mapped in data
Initialize the SPBRGH:SPBRG registers for the
appropriate baud rate. Set or clear the BRGH
and BRG16 bits, as required, to achieve the
desired baud rate.
Enable the asynchronous serial port by clearing
bit SYNC and setting bit SPEN.
If interrupts are desired, set enable bit TXIE.
If 9-bit transmission is desired, set transmit bit
TX9. Can be used as address/data bit.
Enable the transmission by setting bit TXEN
which will also set bit TXIF.
If 9-bit transmission is selected, the ninth bit
should be loaded in bit TX9D.
Load data to the TXREG register (starts
transmission).
If using interrupts, ensure that the GIE and PEIE
bits in the INTCON register (INTCON<7:6>) are
set.
2: Flag bit TXIF is set when enable bit TXEN
PIC18F1230/1330
EUSART ASYNCHRONOUS
TRANSMITTER
memory so it is not available to the user.
is set.
CY
), the TXREG register is empty
DS39758D-page 157

Related parts for PIC18F1230-I/SO