PIC16F74-I/P Microchip Technology, PIC16F74-I/P Datasheet - Page 136

IC MCU FLASH 4KX14 A/D 40DIP

PIC16F74-I/P

Manufacturer Part Number
PIC16F74-I/P
Description
IC MCU FLASH 4KX14 A/D 40DIP
Manufacturer
Microchip Technology
Series
PIC® 16Fr

Specifications of PIC16F74-I/P

Core Size
8-Bit
Program Memory Size
7KB (4K x 14)
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Core Processor
PIC
Speed
20MHz
Connectivity
I²C, SPI, UART/USART
Number Of I /o
33
Program Memory Type
FLASH
Ram Size
192 x 8
Voltage - Supply (vcc/vdd)
4 V ~ 5.5 V
Data Converters
A/D 8x8b
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
40-DIP (0.600", 15.24mm)
Controller Family/series
PIC16F
No. Of I/o's
33
Ram Memory Size
192Byte
Cpu Speed
20MHz
No. Of Timers
3
Package
40PDIP
Device Core
PIC
Family Name
PIC16
Maximum Speed
20 MHz
Operating Supply Voltage
5 V
Data Bus Width
8 Bit
Number Of Programmable I/os
33
Interface Type
I2C/SPI/USART
On-chip Adc
8-chx8-bit
Number Of Timers
3
Processor Series
PIC16F
Core
PIC
Data Ram Size
192 B
Maximum Clock Frequency
20 MHz
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
52715-96, 52716-328, 52717-734
Development Tools By Supplier
ICE2000, DM163022
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
444-1001 - DEMO BOARD FOR PICMICRO MCU
Eeprom Size
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC16F74-I/P
Manufacturer:
MAXIM
Quantity:
101
Part Number:
PIC16F74-I/P
Manufacturer:
MICROCHIP
Quantity:
50
Part Number:
PIC16F74-I/P
Quantity:
2 143
Part Number:
PIC16F74-I/P
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
PIC16F74-I/P
0
Company:
Part Number:
PIC16F74-I/P
Quantity:
2 400
Part Number:
PIC16F74-I/PT
Manufacturer:
MIC
Quantity:
50
Part Number:
PIC16F74-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC16F74-I/PT
0
PICmicro MID-RANGE MCU FAMILY
8.6
DS31008A-page 8-14
Initialization
Example 8-4
is the value to write into the interrupt enable register.
Example 8-5
before they are used. For debugging ease, it may help if macros are placed in other files that are
included at assembly time. This allows the source to be viewed without all the clutter of the
required macros. These files must be included before the macro is used, but it simplifies debug-
ging, if all include files are done at the top of the source file.
Example 8-7
saving and restoring of registers before the execution of the interrupt code.
Example 8-4: Initialization and Enabling of Interrupts
Example 8-5: Register Saving / Restoring as Macros
PIE1_MASK1
PUSH_MACRO
;
POP_MACRO
MOVWF
SWAPF
MOVWF
ENDM
SWAPF
MOVWF
SWAPF
SWAPF
ENDM
:
:
CLRF
CLRF
CLRF
BSF
MOVLW
MOVWF
BCF
BSF
shows the initialization and enabling of device interrupts, where PIE1_MASK1 value
shows a typical Interrupt Service Routine structure. This ISR uses macros for the
shows how to create macro definitions for functions. Macros must be defined
EQU B‘01101010’
STATUS
INTCON
PIR1
STATUS, RP0
PIE1_MASK1
PIE1
STATUS, RP0
INTCON, GIE
MACRO
W_TEMP
STATUS,W
STATUS_TEMP
MACRO
STATUS_TEMP,W
STATUS
W_TEMP,F
W_TEMP,W
; Bank0
; Disable interrupts and clear some flags
; Clear all flag bits
; Bank1
; This is the initial masking for PIE1
;
; Bank0
; Enable Interrupts
; This Macro Saves register contents
; Copy W to a Temporary Register
;
; Swap STATUS nibbles and place
;
; Save STATUS to a Temporary register
;
; End this Macro
; This Macro Restores register contents
; Swap original STATUS register value
;
; Restore STATUS register from
;
; Swap W_Temp nibbles and return
;
; Swap W_Temp to W to restore original
;
; End this Macro
; This is the Interrupt Enable
;
regardless of current bank
into W register
in Bank0
into W (restores original bank)
W register
value to W_Temp
W value without affecting STATUS
Register mask value
Example 8-6
1997 Microchip Technology Inc.
shows this structure.

Related parts for PIC16F74-I/P