ATMEGA169PV-8AUR Atmel, ATMEGA169PV-8AUR Datasheet - Page 184

no-image

ATMEGA169PV-8AUR

Manufacturer Part Number
ATMEGA169PV-8AUR
Description
MCU AVR 16KB FLASH 16MHZ 64TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheet

Specifications of ATMEGA169PV-8AUR

Core Processor
AVR
Core Size
8-Bit
Speed
8MHz
Connectivity
SPI, UART/USART, USI
Peripherals
Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number Of I /o
54
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
*
Package
64TQFP
Device Core
AVR
Family Name
ATmega
Maximum Speed
8 MHz
Operating Supply Voltage
2.5|3.3|5 V
Data Bus Width
8 Bit
Number Of Programmable I/os
54
Interface Type
SPI/USART/USI
On-chip Adc
8-chx10-bit
Number Of Timers
3
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA169PV-8AUR
Manufacturer:
Atmel
Quantity:
10 000
19.7.5
19.7.6
19.7.7
8018P–AVR–08/10
Parity Checker
Disabling the Receiver
Flushing the Receive Buffer
The Parity Checker is active when the high USART Parity mode (UPM1n) bit is set. Type of Par-
ity Check to be performed (odd or even) is selected by the UPM0n bit. When enabled, the Parity
Checker calculates the parity of the data bits in incoming frames and compares the result with
the parity bit from the serial frame. The result of the check is stored in the receive buffer together
with the received data and stop bits. The Parity Error (UPEn) Flag can then be read by software
to check if the frame had a Parity Error.
The UPEn bit is set if the next character that can be read from the receive buffer had a Parity
Error when received and the Parity Checking was enabled at that point (UPM1n = 1). This bit is
valid until the receive buffer (UDRn) is read.
In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing
receptions will therefore be lost. When disabled (that is, the RXENn is set to zero) the Receiver
will no longer override the normal function of the RxD port pin. The Receiver buffer FIFO will be
flushed when the Receiver is disabled. Remaining data in the buffer will be lost.
The receiver buffer FIFO will be flushed when the Receiver is disabled, that is, the buffer will be
emptied of its contents. Unread data will be lost. If the buffer has to be flushed during normal
operation, due to for instance an error condition, read the UDRn I/O location until the RXCn Flag
is cleared. The following code example shows how to flush the receive buffer.
Note:
Assembly Code Example
C Code Example
USART_Flush:
void USART_Flush( void )
{
}
sbis UCSR0A, RXC0
ret
in
rjmp USART_Flush
unsigned char dummy;
while ( UCSR0A & (1<<RXC0) ) dummy = UDR0;
1.
See ”About Code Examples” on page 10.
r16, UDR0
(1)
(1)
ATmega169P
184

Related parts for ATMEGA169PV-8AUR