DSPIC30F4013-20E/PT Microchip Technology, DSPIC30F4013-20E/PT Datasheet - Page 92

IC DSPIC MCU/DSP 48K 44TQFP

DSPIC30F4013-20E/PT

Manufacturer Part Number
DSPIC30F4013-20E/PT
Description
IC DSPIC MCU/DSP 48K 44TQFP
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F4013-20E/PT

Program Memory Type
FLASH
Program Memory Size
48KB (16K x 24)
Package / Case
44-TQFP, 44-VQFP
Core Processor
dsPIC
Core Size
16-Bit
Speed
20 MIPS
Connectivity
CAN, I²C, SPI, UART/USART
Peripherals
AC'97, Brown-out Detect/Reset, I²S, POR, PWM, WDT
Number Of I /o
30
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 13x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Product
DSCs
Data Bus Width
16 bit
Processor Series
DSPIC30F
Core
dsPIC
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
30
Data Ram Size
2 KB
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE4000, DM240002, DM300018, DM330011
Minimum Operating Temperature
- 40 C
Package
44TQFP
Device Core
dsPIC
Family Name
dsPIC30
Maximum Speed
20 MHz
Operating Supply Voltage
3.3|5 V
Interface Type
CAN/I2C/SPI/UART
On-chip Adc
13-chx12-bit
Number Of Timers
5
Core Frequency
20MHz
Embedded Interface Type
CAN, I2C, SPI, UART
No. Of I/o's
30
Flash Memory Size
48KB
Supply Voltage Range
2.5V To 5.5V
Rohs Compliant
Yes
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
AC30F006 - MODULE SKT FOR DSPIC30F 44TQFP
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
DSPIC30F401320EPT

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F4013-20E/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
dsPIC30F3014/4013
14.12.2
Master mode reception is enabled by programming the
Receive Enable bit, RCEN (I2CCON<3>). The I
module must be Idle before the RCEN bit is set, other-
wise the RCEN bit is disregarded. The Baud Rate Gen-
erator begins counting and on each rollover, the state
of the SCL pin ACK and data are shifted into the
I2CRSR on the rising edge of each clock.
14.12.3
In I
located in the I2CBRG register. When the BRG is
loaded with this value, the BRG counts down to ‘0’ and
stops until another reload has taken place. If clock
arbitration is taking place, for instance, the BRG is
reloaded when the SCL pin is sampled high.
As per the I
400 kHz. However, the user can specify any baud rate
up to 1 MHz. I2CBRG values of ‘0’ or ‘1’ are illegal.
EQUATION 14-1:
14.12.4
Clock arbitration occurs when the master de-asserts
the SCL pin (SCL allowed to float high) during any
receive, transmit, or Restart/Stop condition. When the
SCL pin is allowed to float high, the Baud Rate Gener-
ator (BRG) is suspended from counting until the SCL
pin is actually sampled high. When the SCL pin is sam-
pled high, the Baud Rate Generator is reloaded with
the contents of I2CBRG and begins counting. This
ensures that the SCL high time is always at least one
BRG rollover count in the event that the clock is held
low by an external device.
14.12.5
Multi-master operation support is achieved by bus arbi-
tration. When the master outputs address/data bits
onto the SDA pin, arbitration takes place when the
master outputs a ‘1’ on SDA by letting SDA float high
while another master asserts a ‘0’. When the SCL pin
floats high, data should be stable. If the expected data
on SDA is a ‘1’ and the data sampled on the SDA
pin = 0, then a bus collision has taken place. The
master sets the MI2CIF pulse and resetS the master
portion of the I
DS70138E-page 90
2
C Master mode, the reload value for the BRG is
I2CBRG =
I
BAUD RATE GENERATOR
CLOCK ARBITRATION
MULTI-MASTER COMMUNICATION,
BUS COLLISION AND BUS
ARBITRATION
2
2
C MASTER RECEPTION
C standard, FSCK may be 100 kHz or
2
C port to its Idle state.
(
F
F
SCK
SERIAL CLOCK RATE
CY
1,111,111
F
CY
)
– 1
2
C
If a transmit was in progress when the bus collision
occurred, the transmission is halted, the TBF flag is
cleared, the SDA and SCL lines are de-asserted and a
value can now be written to I2CTRN. When the user
services the I
tine, if the I
can resume communication by asserting a Start
condition.
If a Start, Restart, Stop or Acknowledge condition was
in progress when the bus collision occurred, the condi-
tion is aborted, the SDA and SCL lines are de-asserted,
and the respective control bits in the I2CCON register
are cleared to ‘0’. When the user services the bus
collision Interrupt Service Routine, and if the I
free, the user can resume communication by asserting
a Start condition.
The master continues to monitor the SDA and SCL
pins, and if a Stop condition occurs, the MI2CIF bit is
set.
A write to the I2CTRN starts the transmission of data at
the first data bit, regardless of where the transmitter left
off when bus collision occurred.
In a multi-master environment, the interrupt generation
on the detection of Start and Stop conditions allows the
determination of when the bus is free. Control of the I
bus can be taken when the P bit is set in the I2CSTAT
register, or the bus is Idle and the S and P bits are
cleared.
14.13 I
14.13.1
When the device enters Sleep mode, all clock sources
to the module are shut down and stay at logic ‘0’. If
Sleep occurs in the middle of a transmission and the
state machine is partially into a transmission as the
clocks stop, then the transmission is aborted. Similarly,
if Sleep occurs in the middle of a reception, then the
reception is aborted.
14.13.2
For the I
stops or continues on Idle. If I2CSIDL = 0, the module
continues operation on assertion of the Idle mode. If
I2CSIDL = 1, the module stops on Idle.
2
Sleep and Idle Modes
2
C, the I2CSIDL bit determines if the module
2
C Module Operation During CPU
I
SLEEP MODE
I
MODE
C bus is free (i.e., the P bit is set), the user
2
2
C OPERATION DURING CPU
C OPERATION DURING CPU IDLE
2
C master event Interrupt Service Rou-
© 2007 Microchip Technology Inc.
2
C bus is
2
C

Related parts for DSPIC30F4013-20E/PT