CY8C5246AXI-038 Cypress Semiconductor Corp, CY8C5246AXI-038 Datasheet - Page 4

no-image

CY8C5246AXI-038

Manufacturer Part Number
CY8C5246AXI-038
Description
Manufacturer
Cypress Semiconductor Corp
Datasheet

Specifications of CY8C5246AXI-038

Lead Free Status / RoHS Status
Compliant
CY8C52 family these blocks can include four 16-bit timers,
counters, and PWM blocks; I
Full-Speed USB; and Full CAN 2.0b.
For more details on the peripherals see the
Peripherals”
information on UDBs, DSI, and other digital blocks, see the
“Digital Subsystem”
PSoC’s analog subsystem is the second half of its unique
configurability. All analog performance is based on a highly
accurate absolute voltage reference with less than 0.1% error
over temperature and voltage. The configurable analog
subsystem includes:
All GPIO pins can route analog signals into and out of the device
using the internal analog bus. This allows the device to interface
up to 62 discrete analog signals.
The CY8C52 family offers a SAR ADC. Featuring 12-bit
conversions at up to 1 M samples per second, it also offers low
nonlinearity and offset errors and SNR better than 70 dB. It is
well suited for a variety of higher speed analog applications.
A high-speed voltage or current DAC supports 8-bit output
signals at an update rate of 8 Msps in IDAC and 1 Msps in VDAC.
It can be routed out of any GPIO pin. You can create higher
resolution voltage PWM DAC outputs using the UDB array. This
can be used to create a pulse width modulated (PWM) DAC of
up to 10 bits, at up to 48 kHz. The digital DACs in each UDB
support PWM, PRS, or delta-sigma algorithms with
programmable widths.
In addition to the ADC and DAC, the analog subsystem provides
multiple comparators.
See the
datasheet for more details.
PSoC’s CPU subsystem is built around a 32-bit three-stage
pipelined ARM Cortex-M3 processor running at up to 40 MHz.
The Cortex-M3 includes a tightly integrated nested vectored
interrupt controller (NVIC) and various debug and trace modules.
The overall CPU subsystem includes a DMA controller, flash
cache, and RAM. The NVIC provides low latency, nested
interrupts, and tail-chaining of interrupts and other features to
increase the efficiency of interrupt handling. The DMA controller
enables peripherals to exchange data without CPU involvement.
This allows the CPU to run slower (saving power) or use those
CPU cycles to improve the performance of firmware algorithms.
The flash cache also reduces system power consumption by
allowing less frequent flash access.
PSoC’s nonvolatile subsystem consists of flash, byte-writeable
EEPROM, and nonvolatile configuration options. It provides up
to 256 KB of on-chip flash. The CPU can reprogram individual
blocks of flash, enabling boot loaders. The designer can enable
an ECC for high-reliability applications. A powerful and flexible
protection model secures your sensitive information, allowing
selective memory block locking for read and write protection.
Document Number: 001-55034 Rev. *G
Analog muxes
Comparators
Voltage references
ADC
DAC
“Analog Subsystem”
section on page 30 of this datasheet. For
section on page 30 of this datasheet.
2
section on page 40 of this
C slave, master, and multimaster;
“Example
PRELIMINARY
Two KB of byte-writable EEPROM is available on-chip to store
application data. Additionally, selected configuration options
such as boot speed and pin drive mode are stored in nonvolatile
memory. This allows settings to activate immediately after
power-on reset (POR).
The three types of PSoC I/O are extremely flexible. All I/Os have
many drive modes that are set at POR. PSoC also provides up
to four I/O voltage domains through the V
has analog I/O, LCD drive, flexible interrupt generation, slew rate
control, and digital I/O capability. The SIOs on PSoC allow V
to be set independently of V
SIOs are in input mode they are high impedance. This is true
even when the device is not powered or when the pin voltage
goes above the supply voltage. This makes the SIO ideally suited
for use on an I
other devices on the bus are. The SIO pins also have high
current sink capability for applications such as LED drives. The
programmable input threshold feature of the SIO can be used to
make the SIO function as a general purpose analog comparator.
For devices with Full-Speed USB, the USB physical interface is
also provided (USBIO). When not using USB these pins may
also be used for limited digital functionality and device
programming. All the features of the PSoC I/Os are covered in
detail in the
datasheet.
The PSoC device incorporates flexible internal clock generators,
designed for high stability and factory trimmed for high accuracy.
The internal main oscillator (IMO) is the master clock base for
the system and has 1% accuracy at 3 MHz. The IMO can be
configured to run from 3 MHz up to 24 MHz. Multiple clock
derivatives can be generated from the main clock frequency to
meet application needs. The device provides a PLL to generate
system clock frequencies up to 40 MHz from the IMO, external
crystal, or external reference clock. It also contains a separate,
very low-power internal low-speed oscillator (ILO) for the sleep
and watchdog timers. A 32.768-kHz external watch crystal is
also supported for use in RTC applications. The clocks, together
with programmable clock dividers, provide the flexibility to
integrate most timing requirements.
The CY8C52 family supports a wide supply operating range from
1.71 to 5.5 V. This allows operation from regulated supplies such
as 1.8 ± 5%, 2.5 V ±10%, 3.3 V ± 10%, or 5.0 V ± 10%, or directly
from a wide range of battery types. In addition, it provides an
integrated high-efficiency synchronous boost converter that can
power the device from supply voltages as low as 0.5 V. This
enables the device to be powered directly from a single battery
or solar cell. In addition, the designer can use the boost converter
to generate other voltages required by the device, such as a
3.3 V supply for LCD glass drive. The boost’s output is available
on the V
be powered from the PSoC.
PSoC supports a wide range of low-power modes. These include
a 300 nA hibernate mode with RAM retention and a 2-µA sleep
mode with RTC. In the second mode the optional 32.768-kHz
watch crystal runs continuously and maintains an accurate RTC.
Power to all major functional blocks, including the programmable
digital and analog peripherals, can be controlled independently
by firmware. This allows low-power background processing
when some peripherals are not in use. This, in turn, provides a
total device current of only 2 mA when the CPU is running at
6 MHz.
PSoC
BOOST
“I/O System and Routing”
®
2
C bus where the PSoC may not be powered when
pin, allowing other devices in the application to
5: CY8C52 Family Datasheet
DDIO
when used as outputs. When
section on page 24 of this
DDIO
pins. Every GPIO
Page 4 of 85
OH
[+] Feedback

Related parts for CY8C5246AXI-038