AM7969-175JC AMD (ADVANCED MICRO DEVICES), AM7969-175JC Datasheet - Page 61

AM7969-175JC

Manufacturer Part Number
AM7969-175JC
Description
Manufacturer
AMD (ADVANCED MICRO DEVICES)
Datasheet

Specifications of AM7969-175JC

Operating Supply Voltage (typ)
5V
Operating Supply Voltage (min)
4.5V
Operating Supply Voltage (max)
5.5V
Operating Temp Range
0C to 70C
Operating Temperature Classification
Commercial
Package Type
PLCC
Mounting
Surface Mount
Pin Count
28
Lead Free Status / Rohs Status
Not Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AM7969-175JC
Quantity:
6
Part Number:
AM7969-175JC
Manufacturer:
AMD
Quantity:
20 000
AMD
3.2 Violation Logic
The TAXI Receiver logic has been designed to detect the most common types of
transmission errors. It detects these errors by completely decoding the incoming data
patterns, and recognizes the following types of VIOLATIONS:
1. Illegal, reserved or unused data patterns (pure Violations).
2. Unused COMMAND combinations.
3. COMMAND in Upper half and DATA in Lower half pattern.
4. DATA in Upper half and COMMAND in Lower half pattern.
Type 1 and 2 VIOLATIONS are decoded and interpreted as either DATA or COMMAND
outputs with the appropriate STRB output. Type 3 & 4 VIOLATIONS are decoded as
COMMAND outputs with a CSTROBE output (even though one half would have been
transformed DATA/COMMAND or COMMAND/DATA by an error), since there is no
information available to the TAXI Receiver to indicate where the error lies. The user
needs to be aware of this possible transposition (possible with all four types of VIOLA-
TION), since the system must account for it. VIOLATION will always be the flag for
these detectable errors.
This method of detection is not 100% effective. As Appendix B shows, it will detect
approximately 50% of the possible double bit errors in Data. Double bit errors in
Command will be detected 99.8% of the time or more, depending upon the pattern
width. Appendix B contains a more detailed treatment of the efficiency of the violation
logic for the various data bit modes.
The method of detecting violations, is effective enough to be used to give an early
warning of transmission problems before the host’s error detection system would detect
the errors. It should not be used alone in fault sensitive systems, since it misses a
significant number of transmission errors which cause one valid DATA pattern to alias to
another VALID DATA PATTERN.
3.3 TAXI PLL Characteristics
The Phase Locked Loop in the TAXI Receiver is used to recover the data encoded in
the serial bit stream sent by the TAXI Transmitter. In order to ensure accurate data
recovery, the Receiver PLL must lock on to the underlying code rate of the Transmitter,
and must track minor changes in frequency and phase while rejecting noise superim-
posed on the bit stream. This noise includes both amplitude and phase/frequency
disturbances. Amplitude variations are dealt with in the Receiver’s input amplifier
(SERIN+/-), and are not passed through to the PLL, except for phase effects.
Phase/frequency noise, or jitter, can come from many sources, and can have many
different characteristics. Jitter can be introduced by the Transmitter, the Receiver, the
media interface or by the media itself. Examples of media induced jitter include reflec-
tions and edge perturbations caused by improper line termination, pulse width spreading
due to frequency dependent cable attenuation, and pulse dispersion caused by fiber
optic cable effects. Examples of media interface jitter include low light effects in optical
receivers and pulse width distortion caused by baseline shift (changing DC offset) in AC
coupled amplifiers.
The TAXI PLL has been optimized to allow correct data recovery in the presence of the
largest jitter possible. To this end, the PLL parameters, most notably loop bandwidth,
have been chosen to enhance the jitter tolerance of the TAXI Receiver.
57
TAXIchip Integrated Circuits Technical Manual

Related parts for AM7969-175JC