AT45DB161D-SU Atmel, AT45DB161D-SU Datasheet - Page 19

IC FLASH 16MBIT 66MHZ 8SOIC

AT45DB161D-SU

Manufacturer Part Number
AT45DB161D-SU
Description
IC FLASH 16MBIT 66MHZ 8SOIC
Manufacturer
Atmel

Specifications of AT45DB161D-SU

Format - Memory
FLASH
Memory Type
DataFLASH
Memory Size
16M (4096 pages x 528 bytes)
Speed
66MHz
Interface
SPI, 3-Wire Serial
Voltage - Supply
2.7 V ~ 3.6 V
Operating Temperature
-40°C ~ 85°C
Package / Case
8-SOIC (5.3mm Width), 8-SOP, 8-SOEIAJ
Architecture
Sectored
Interface Type
SPI
Supply Voltage (max)
3.6 V
Supply Voltage (min)
2.7 V
Maximum Operating Current
15 mA
Mounting Style
SMD/SMT
Organization
128 KB x 16
Current, Input, Leakage
1 μA
Current, Operating
11 mA (Read), 12 mA (Program/Erase)
Current, Output, Leakage
1
Data Retention
20 yrs.
Density
16M
Package Type
EIAJ SOIC
Temperature, Operating
-40 to +85 °C
Time, Access
6 ns
Time, Address Hold
5
Time, Address Setup
5
Time, Fall
6.8 ns
Time, Rise
6.8 ns
Voltage, Input, High
1.89 to 2.52 V
Voltage, Input, Low
0.81 to 1.08 V
Voltage, Output, High
2.5 V
Voltage, Output, Low
0.4 V
Voltage, Supply
2.7 to 3.6 V
Memory Configuration
4096 Pages X 528 Bytes
Clock Frequency
66MHz
Supply Voltage Range
2.5V To 3.6V, 2.7V To 3.6V
Rohs Compliant
Yes
Access Time (max)
6ns
Boot Type
Not Required
Address Bus
1b
Operating Supply Voltage (typ)
3/3.3V
Operating Temp Range
-40C to 85C
Program/erase Volt (typ)
2.7 to 3.6V
Sync/async
Synchronous
Operating Temperature Classification
Industrial
Operating Supply Voltage (min)
2.7V
Operating Supply Voltage (max)
3.6V
Supply Current
15mA
Mounting
Surface Mount
Pin Count
8
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT45DB161D-SU
Manufacturer:
ATMEL
Quantity:
106 020
Part Number:
AT45DB161D-SU
Manufacturer:
AYMEL
Quantity:
1
Part Number:
AT45DB161D-SU
Quantity:
2 330
Part Number:
AT45DB161D-SU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
AT45DB161D-SU
Quantity:
74
Part Number:
AT45DB161D-SU-2.5
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
AT45DB161D-SU-N03
Manufacturer:
NS
Quantity:
487
Part Number:
AT45DB161D-SU-SL383
Manufacturer:
AMS
Quantity:
30 000
3500N–DFLASH–05/10
10.2.2 Reading the Security Register
11.
11.1
11.2
The Security Register can be read by first asserting the CS pin and then clocking in an opcode of 77H followed by
three dummy bytes. After the last don't care bit has been clocked in, the content of the Security Register can be
clocked out on the SO pins. After the last byte of the Security Register has been read, additional pulses on the
SCK pin will simply result in undefined data being output on the SO pins.
Deasserting the CS pin will terminate the Read Security Register operation and put the SO pins into a high-
impedance state.
Figure 10-4. Read Security Register
Additional Commands
Main Memory Page to Buffer Transfer
A page of data can be transferred from the main memory to either buffer 1 or buffer 2. To start the operation for the
standard Atmel
be clocked into the device, followed by three address bytes comprised of two don’t care bits, 12 page address bits
(PA11 - PA0), which specify the page in main memory that is to be transferred, and 10 don’t care bits. To perform
a main memory page to buffer transfer for the binary page size (512-bytes), the opcode 53H for buffer 1 or 55H for
buffer 2, must be clocked into the device followed by three address bytes consisting of three don’t care bits, 12
page address bits (A20 - A9) which specify the page in the main memory that is to be transferred, and nine don’t
care bits. The CS pin must be low while toggling the SCK pin to load the opcode and the address bytes from the
input pin (SI). The transfer of the page of data from the main memory to the buffer will begin when the CS pin
transitions from a low to a high state. During the transfer of a page of data (t
the RDY/BUSY can be monitored to determine whether the transfer has been completed.
Main Memory Page to Buffer Compare
A page of data in main memory can be compared to the data in buffer 1 or buffer 2. To initiate the operation for
standard DataFlash page size, a 1-byte opcode, 60H for buffer 1 and 61H for buffer 2, must be clocked into the
device, followed by three address bytes consisting of two don’t care bits, 12 page address bits (PA11 - PA0) that
specify the page in the main memory that is to be compared to the buffer, and 10 don’t care bits. To start a main
memory page to buffer compare for a binary page size, the opcode 60H for buffer 1 or 61H for buffer 2, must be
clocked into the device followed by three address bytes consisting of three don’t care bits, 12 page address bits
(A20 - A9) that specify the page in the main memory that is to be compared to the buffer, and nine don’t care bits.
The CS pin must be low while toggling the SCK pin to load the opcode and the address bytes from the input pin
(SI). On the low-to-high transition of the CS pin, the data bytes in the selected main memory page will be compared
with the data bytes in buffer 1 or buffer 2. During this time (t
indicate that the part is busy. On completion of the compare operation, bit six of the status register is updated with
the result of the compare.
CS
SO
SI
Each transition
represents eight bits
®
DataFlash
Opcode
®
page size (528-bytes), a 1-byte opcode, 53H for buffer 1 and 55H for buffer 2, must
X
X
X
COMP
Data Byte
n
), the status register and the RDY/BUSY pin will
Data Byte
n + 1
XFR
Atmel AT45DB161D
), the status register can be read or
Data Byte
n + x
19

Related parts for AT45DB161D-SU