PIC18F87J11-I/PT Microchip Technology, PIC18F87J11-I/PT Datasheet - Page 40

no-image

PIC18F87J11-I/PT

Manufacturer Part Number
PIC18F87J11-I/PT
Description
IC PIC MCU FLASH 64KX16 80TQFP
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F87J11-I/PT

Program Memory Type
FLASH
Program Memory Size
128KB (64K x 16)
Package / Case
80-TFQFP
Core Processor
PIC
Core Size
8-Bit
Speed
48MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number Of I /o
68
Ram Size
3930 x 8
Voltage - Supply (vcc/vdd)
2 V ~ 3.6 V
Data Converters
A/D 15x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
3904 B
Interface Type
EUSART/I2C/MSSP/SPI
Maximum Clock Frequency
48 MHz
Number Of Programmable I/os
68
Number Of Timers
5
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, DM183032, DM183022, DV164136
Minimum Operating Temperature
- 40 C
On-chip Adc
15-ch x 10-bit
Package
80TQFP
Device Core
PIC
Family Name
PIC18
Maximum Speed
48 MHz
Operating Supply Voltage
1.8|2.5|3.3 V
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
DV164136 - DEVELOPMENT KIT FOR PIC18AC162091 - HEADER MPLAB ICD2 18F87J11 64/80MA180020 - MODULE PLUG-IN HPC EXPL 18F87J11AC164328 - MODULE SKT FOR 80TQFP
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F87J11-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC18F87J11-I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
compensation techniques are shown here.
PIC18F87J11 FAMILY
2.5.3
The internal oscillator block is calibrated at the factory
to produce an INTOSC output frequency of 8 MHz. It
can be adjusted in the user’s application by writing to
TUN5:TUN0 (OSCTUNE<5:0>) in the OSCTUNE
register (Register 2-2).
When the OSCTUNE register is modified, the INTOSC
frequency will begin shifting to the new frequency. The
oscillator will stabilize within 1 ms. Code execution
continues during this shift and there is no indication that
the shift has occurred.
The INTRC oscillator operates independently of the
INTOSC source. Any changes in INTOSC across
voltage and temperature are not necessarily reflected
by changes in INTRC or vice versa. The frequency of
INTRC is not affected by OSCTUNE.
2.5.4
The INTOSC frequency may drift as V
ture changes, and can affect the controller operation in
a variety of ways. It is possible to adjust the INTOSC
frequency by modifying the value in the OSCTUNE reg-
ister. Depending on the device, this may have no effect
on the INTRC clock source frequency.
Tuning INTOSC requires knowing when to make the
adjustment, in which direction it should be made, and in
some cases, how large a change is needed. Three
2.5.4.1
An adjustment may be required when the EUSART
begins to generate framing errors or receives data with
errors while in Asynchronous mode. Framing errors
indicate that the device clock frequency is too high. To
adjust for this, decrement the value in OSCTUNE to
reduce the clock frequency. On the other hand, errors
in data may suggest that the clock speed is too low. To
compensate, increment OSCTUNE to increase the
clock frequency.
2.5.4.2
This technique compares device clock speed to some
reference clock. Two timers may be used; one timer is
clocked by the peripheral clock, while the other is
clocked by a fixed reference source, such as the
Timer1 oscillator.
Both timers are cleared, but the timer clocked by the
reference generates interrupts. When an interrupt
occurs, the internally clocked timer is read and both
timers are cleared. If the internally clocked timer value
is much greater than expected, then the internal
oscillator block is running too fast. To adjust for this,
decrement the OSCTUNE register.
DS39778D-page 40
INTERNAL OSCILLATOR OUTPUT
FREQUENCY AND TUNING
INTOSC FREQUENCY DRIFT
Compensating with the EUSART
Compensating with the Timers
DD
or tempera-
2.5.4.3
A CCP module can use free-running Timer1 (or
Timer3), clocked by the internal oscillator block and an
external event with a known period (i.e., AC power
frequency). The time of the first event is captured in the
CCPRxH:CCPRxL registers and is recorded for use
later. When the second event causes a capture, the
time of the first event is subtracted from the time of the
second event. Since the period of the external event is
known, the time difference between events can be
calculated.
If the measured time is much greater than the
calculated time, the internal oscillator block is running
too fast. To compensate, decrement the OSCTUNE
register. If the measured time is much less than the
calculated time, the internal oscillator block is running
too slow. To compensate, increment the OSCTUNE
register.
2.6
In addition to the F
tor modes, the device clock in the PIC18F87J11 family
can also be configured to provide a reference clock out-
put signal to a port pin. This feature is available in all
oscillator configurations and allows the user to select a
greater range of clock sub-multiples to drive external
devices in the application.
This reference clock output is controlled by the
REFOCON register (Register 2-3). Setting the ROON
bit (REFOCON<7>) makes the clock signal available
on the REFO (RE3) pin. The RODIV3:RODIV0 bits
enable the selection of 16 different clock divider
options.
The ROSSLP and ROSEL bits (REFOCON<5:4>) con-
trol the availability of the reference output during Sleep
mode. The ROSEL bit determines if the oscillator on
OSC1 and OSC2, or the current system clock source,
is used for the reference clock output. The ROSSLP bit
determines if the reference source is available on RE3
when the device is in Sleep mode.
To use the reference clock output in Sleep mode, both
the ROSSLP and ROSEL bits must be set. The device
clock must also be configured for an EC or HS mode;
otherwise, the oscillator on OSC1 and OSC2 will be
powered down when the device enters Sleep mode.
Clearing the ROSEL bit allows the reference output
frequency to change as the system clock changes
during any clock switches.
The REFOCON register is an alternate SFR, and
shares the same memory address as the OSCCON
register. It is accessed by setting the ADSHR bit in the
WDTCON register (WDTCON<4>).
Reference Clock Output
Compensating with the CCP Module
in Capture Mode
OSC
/4 clock output in certain oscilla-
© 2009 Microchip Technology Inc.

Related parts for PIC18F87J11-I/PT