MAXQ2010-RFX+ Maxim Integrated Products, MAXQ2010-RFX+ Datasheet - Page 30

IC MCU 16BIT 64KB FLASH 100-LQFP

MAXQ2010-RFX+

Manufacturer Part Number
MAXQ2010-RFX+
Description
IC MCU 16BIT 64KB FLASH 100-LQFP
Manufacturer
Maxim Integrated Products
Series
MAXQ™r
Datasheet

Specifications of MAXQ2010-RFX+

Core Processor
RISC
Core Size
16-Bit
Speed
10MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number Of I /o
55
Program Memory Size
64KB (64K x 8)
Program Memory Type
FLASH
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 3.6 V
Data Converters
A/D 8x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
100-LQFP
Processor Series
MAXQ2010
Core
RISC
Data Bus Width
16 bit
Data Ram Size
2 KB
Interface Type
I2C, SPI, USART
Maximum Clock Frequency
10 MHz
Number Of Timers
3
Operating Supply Voltage
2.7 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
Controller Family/series
MAXQ
No. Of I/o's
43
Ram Memory Size
2048Byte
Cpu Speed
10MHz
No. Of Timers
3
Embedded Interface Type
I2C, SPI, USART
Rohs Compliant
Yes
Number Of Programmable I/os
55
Development Tools By Supplier
MAXQ2010-KIT
Package
100LQFP
Family Name
MAXQ
Maximum Speed
10 MHz
On-chip Adc
8-chx12-bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
16-Bit Mixed-Signal Microcontroller
with LCD Interface
Figure 9. In-Circuit Debugger
The low-power, high-performance RISC architecture of
this device makes it an excellent fit for many portable or
battery-powered applications that require cost-effective
computing. The high-throughput core is complemented
by a 16-bit hardware multiplier-accumulator, allowing
the implementation of sophisticated computational
algorithms. Applications benefit from a wide range of
peripheral interfaces, allowing the microcontroller to
communicate with many external devices. With integrat-
ed LCD support of up to 160 segments, applications
can support complex user interfaces. Displays are dri-
ven directly with no additional external hardware
required. Contrast can be adjusted using a built-in,
adjustable resistor. The simplified architecture reduces
component count and board space, critical factors in
the design of portable systems.
The MAXQ2010 is ideally suited for applications such
as medical instrumentation, portable blood-glucose
equipment, and data-collection devices. For blood-glu-
cose measurement, the microcontroller integrates an
SPI interface that directly connects with analog front-
ends for measuring test strips.
Careful PCB layout significantly minimizes noise on the
analog inputs, resulting in less noise on the digital I/O
30
______________________________________________________________________________________
Applications Information
Grounds and Bypassing
TMS
TDO
TCK
TDI
CONTROLLER
MAXQ2010
TAP
(UTILITY ROM)
ROUTINES
BREAKPOINT
SERVICE
ENGINE
DEBUG
DEBUG
that could cause improper operation. The use of multi-
layer boards is essential to allow the use of dedicated
power planes. The area under any digital components
should be a continuous ground plane if possible. Keep
any bypass capacitor leads short for best noise rejec-
tion and place the capacitors as close to the leads of
the devices as possible.
Separate ground areas must be provided for the analog
(AGND) and digital (DGND) portions, connected
together at a single point.
CMOS design guidelines for any semiconductor require
that no pin be taken above V
Violation of this guideline can result in a hard failure
(damage to the silicon inside the device) or a soft fail-
ure (unintentional modification of memory contents).
Voltage spikes above or below the device’s absolute
maximum ratings can potentially cause a devastating
IC latchup.
Microcontrollers commonly experience negative volt-
age spikes through either their power pins or general-
purpose I/O pins. Negative voltage spikes on power
pins are especially problematic as they directly couple
to the internal power buses. Devices such as keypads
can conduct electrostatic discharges directly into the
microcontroller and seriously damage the device.
System designers must protect components against
these transients that can corrupt system memory.
CONTROL
ADDRESS
DATA
CPU
DVDD
or below DGND.

Related parts for MAXQ2010-RFX+