ATmega256RZAV Atmel Corporation, ATmega256RZAV Datasheet - Page 202

no-image

ATmega256RZAV

Manufacturer Part Number
ATmega256RZAV
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega256RZAV

Flash (kbytes)
256 Kbytes
Max. Operating Frequency
16 MHz
Max I/o Pins
54
Spi
3
Twi (i2c)
1
Uart
2
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Crypto Engine
No
Sram (kbytes)
8
Eeprom (bytes)
4096
Operating Voltage (vcc)
1.8 to 3.6
Timers
6
Frequency Band
2.4 GHz
Max Data Rate (mb/s)
0.25
Antenna Diversity
No
External Pa Control
No
Power Output (dbm)
3
Receiver Sensitivity (dbm)
-101
Receive Current Consumption (ma)
16.0
Transmit Current Consumption (ma)
17.0
Link Budget (dbm)
104

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega256RZAV-8MU
Manufacturer:
Atmel
Quantity:
135
21.2
21.2.1
2549N–AVR–05/11
Register Description
SPCR – SPI Control Register
• Bit 7 – SPIE: SPI Interrupt Enable
This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if
the Global Interrupt Enable bit in SREG is set.
• Bit 6 – SPE: SPI Enable
When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI
operations.
• Bit 5 – DORD: Data Order
When the DORD bit is written to one, the LSB of the data word is transmitted first.
When the DORD bit is written to zero, the MSB of the data word is transmitted first.
• Bit 4 – MSTR: Master/Slave Select
This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic
zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,
and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI Mas-
ter mode.
• Bit 3 – CPOL: Clock Polarity
When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low
when idle. Refer to
CPOL functionality is summarized in
Table 21-3.
• Bit 2 – CPHA: Clock Phase
The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or
trailing (last) edge of SCK. Refer to
example. The CPOL functionality is summarized in
Table 21-4.
Bit
0x2C (0x4C)
Read/Write
Initial Value
CPOL
CPHA
CPOL Functionality
CPHA Functionality
0
1
0
1
SPIE
R/W
7
0
Figure 21-3 on page 201
SPE
R/W
6
0
ATmega640/1280/1281/2560/2561
DORD
R/W
Figure 21-3 on page 201
5
0
Table
Leading Edge
Leading Edge
MSTR
Sample
Falling
21-3.
Rising
R/W
Setup
4
0
and
Figure 21-4 on page 201
Table
CPOL
R/W
3
0
21-4.
and
CPHA
R/W
2
0
Figure 21-4 on page 201
SPR1
R/W
1
0
Trailing Edge
Trailing Edge
Sample
for an example. The
Falling
Rising
Setup
SPR0
R/W
0
0
SPCR
for an
202

Related parts for ATmega256RZAV