ATmega88 Atmel Corporation, ATmega88 Datasheet - Page 168

no-image

ATmega88

Manufacturer Part Number
ATmega88
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega88

Flash (kbytes)
8 Kbytes
Pin Count
32
Max. Operating Frequency
20 MHz
Cpu
8-bit AVR
# Of Touch Channels
12
Hardware Qtouch Acquisition
No
Max I/o Pins
23
Ext Interrupts
24
Usb Speed
No
Usb Interface
No
Spi
2
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
6
Input Capture Channels
1
Pwm Channels
6
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega88-15AT
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega88-15AT
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega88-15AT1
Manufacturer:
ATMEL
Quantity:
1 000
Part Number:
ATmega88-15AT1
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega88-15AT1
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega88-15ATI
Manufacturer:
ATMEL
Quantity:
5 510
Part Number:
ATmega88-15ATI
Manufacturer:
LT
Quantity:
5 510
Part Number:
ATmega88-15AZ
Manufacturer:
ATMEL
Quantity:
2 000
Part Number:
ATmega88-15AZ
Manufacturer:
ATMEL
Quantity:
120
Part Number:
ATmega88-15AZ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega88-15AZ
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega88-20AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega88-20AJ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega88-20AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
19.5
19.5.1
2545T–AVR–05/11
Register description
SPCR – SPI control register
• Bit 7 – SPIE: SPI interrupt enable
This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if
the Global Interrupt Enable bit in SREG is set.
• Bit 6 – SPE: SPI enable
When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI
operations.
• Bit 5 – DORD: Data order
When the DORD bit is written to one, the LSB of the data word is transmitted first.
When the DORD bit is written to zero, the MSB of the data word is transmitted first.
• Bit 4 – MSTR: Master/slave select
This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic
zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,
and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI Mas-
ter mode.
• Bit 3 – CPOL: Clock polarity
When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low
when idle. Refer to
CPOL functionality is summarized below:
Table 19-3.
• Bit 2 – CPHA: Clock phase
The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or
trailing (last) edge of SCK. Refer to
example. The CPOL functionality is summarized below:
Table 19-4.
Bit
0x2C (0x4C)
Read/write
Initial value
CPOL
CPHA
CPOL functionality.
CPHA Functionality
0
1
0
1
SPIE
R/W
7
0
Figure 19-3 on page 167
SPE
R/W
6
0
DORD
R/W
Figure 19-3 on page 167
5
0
Leading edge
Leading edge
MSTR
Sample
Falling
Rising
R/W
Setup
4
0
and
Figure 19-4 on page 167
CPOL
R/W
3
0
and
CPHA
R/W
ATmega48/88/168
2
0
Figure 19-4 on page 167
SPR1
R/W
1
0
Trailing edge
Trailing edge
Sample
for an example. The
Falling
Rising
Setup
SPR0
R/W
0
0
SPCR
for an
168

Related parts for ATmega88