ATtiny13A Atmel Corporation, ATtiny13A Datasheet - Page 19

no-image

ATtiny13A

Manufacturer Part Number
ATtiny13A
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATtiny13A

Flash (kbytes)
1 Kbytes
Pin Count
8
Max. Operating Frequency
20 MHz
Cpu
8-bit AVR
Hardware Qtouch Acquisition
No
Max I/o Pins
6
Ext Interrupts
6
Usb Speed
No
Usb Interface
No
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
4
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
0.06
Eeprom (bytes)
64
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
Yes
Temp. Range (deg C)
-40 to 125
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
1
Output Compare Channels
2
Pwm Channels
2
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATtiny13A-MMU
Manufacturer:
DP
Quantity:
34 000
Part Number:
ATtiny13A-MMU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny13A-MMUR
Manufacturer:
TI
Quantity:
4 430
Company:
Part Number:
ATtiny13A-PU
Quantity:
15 000
Part Number:
ATtiny13A-SFR
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny13A-SHR
Manufacturer:
Laird Technologies Inc
Quantity:
400 000
Part Number:
ATtiny13A-SN
Manufacturer:
MICROCHIP
Quantity:
3 000
Part Number:
ATtiny13A-SS7R
Manufacturer:
Atmel
Quantity:
8 052
Part Number:
ATtiny13A-SSU
Manufacturer:
ATMEL
Quantity:
500
Part Number:
ATtiny13A-SSU
Manufacturer:
ST
0
Part Number:
ATtiny13A-SSU
Manufacturer:
ATMEL可看货
Quantity:
20 000
Company:
Part Number:
ATtiny13A-SSU
Quantity:
7 450
Company:
Part Number:
ATtiny13A-SSU
Quantity:
16 000
Part Number:
ATtiny13A-SSUR
Manufacturer:
ATMEL
Quantity:
8 000
Part Number:
ATtiny13A-SSUR
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Company:
Part Number:
ATtiny13A-SSUR
Quantity:
3 900
Part Number:
ATtiny13A-SU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
5.3.6
8126E–AVR–07/10
Preventing EEPROM Corruption
The next code examples show assembly and C functions for reading the EEPROM. The exam-
ples assume that interrupts are controlled so that no interrupts will occur during execution of
these functions.
Note:
During periods of low V
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.
An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.
EEPROM data corruption can easily be avoided by following this design recommendation:
Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can
be done by enabling the internal Brown-out Detector (BOD). If the detection level of the internal
BOD does not match the needed detection level, an external low V
be used. If a reset occurs while a write operation is in progress, the write operation will be com-
pleted provided that the power supply voltage is sufficient.
Assembly Code Example
C Code Example
EEPROM_read:
unsigned char EEPROM_read(unsigned char ucAddress)
{
}
; Wait for completion of previous write
sbic EECR,EEPE
rjmp EEPROM_read
; Set up address (r17) in address register
out EEARL, r17
; Start eeprom read by writing EERE
sbi EECR,EERE
; Read data from data register
in
ret
/* Wait for completion of previous write */
while(EECR & (1<<EEPE))
/* Set up address register */
EEARL = ucAddress;
/* Start eeprom read by writing EERE */
EECR |= (1<<EERE);
/* Return data from data register */
return EEDR;
See
;
“Code Examples” on page
r16,EEDR
CC
, the EEPROM data can be corrupted because the supply voltage is
6.
CC
reset protection circuit can
19

Related parts for ATtiny13A