ATtiny13A Atmel Corporation, ATtiny13A Datasheet - Page 32

no-image

ATtiny13A

Manufacturer Part Number
ATtiny13A
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATtiny13A

Flash (kbytes)
1 Kbytes
Pin Count
8
Max. Operating Frequency
20 MHz
Cpu
8-bit AVR
Hardware Qtouch Acquisition
No
Max I/o Pins
6
Ext Interrupts
6
Usb Speed
No
Usb Interface
No
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
4
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
0.06
Eeprom (bytes)
64
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
Yes
Temp. Range (deg C)
-40 to 125
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
1
Output Compare Channels
2
Pwm Channels
2
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATtiny13A-MMU
Manufacturer:
DP
Quantity:
34 000
Part Number:
ATtiny13A-MMU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny13A-MMUR
Manufacturer:
TI
Quantity:
4 430
Company:
Part Number:
ATtiny13A-PU
Quantity:
15 000
Part Number:
ATtiny13A-SFR
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny13A-SHR
Manufacturer:
Laird Technologies Inc
Quantity:
400 000
Part Number:
ATtiny13A-SN
Manufacturer:
MICROCHIP
Quantity:
3 000
Part Number:
ATtiny13A-SS7R
Manufacturer:
Atmel
Quantity:
8 052
Part Number:
ATtiny13A-SSU
Manufacturer:
ATMEL
Quantity:
500
Part Number:
ATtiny13A-SSU
Manufacturer:
ST
0
Part Number:
ATtiny13A-SSU
Manufacturer:
ATMEL可看货
Quantity:
20 000
Company:
Part Number:
ATtiny13A-SSU
Quantity:
7 450
Company:
Part Number:
ATtiny13A-SSU
Quantity:
16 000
Part Number:
ATtiny13A-SSUR
Manufacturer:
ATMEL
Quantity:
8 000
Part Number:
ATtiny13A-SSUR
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Company:
Part Number:
ATtiny13A-SSUR
Quantity:
3 900
Part Number:
ATtiny13A-SU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
32
Minimizing Power Consumption
ATtiny13A
Analog to Digital Converter
Analog Comparator
Brown-out Detector
Internal Voltage Reference
Watchdog Timer
Modules can be shut down in Idle and Active modes, significantly helping to reduce the overall
power consumption. In all other sleep modes, the clock is already stopped. See
of I/O Modules” on page 124
There are several issues to consider when trying to minimize the power consumption in an AVR
controlled system. In general, sleep modes should be used as much as possible, and the sleep
mode should be selected so that as few as possible of the device’s functions are operating. All
functions not needed should be disabled. In particular, the following modules may need special
consideration when trying to achieve the lowest possible power consumption.
If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be dis-
abled before entering any sleep mode. When the ADC is turned off and on again, the next
conversion will be an extended conversion. Refer to
details on ADC operation.
When entering Idle mode, the Analog Comparator should be disabled if not used. When entering
ADC Noise Reduction mode, the Analog Comparator should be disabled. In the other sleep
modes, the Analog Comparator is automatically disabled. However, if the Analog Comparator is
set up to use the Internal Voltage Reference as input, the Analog Comparator should be dis-
abled in all sleep modes. Otherwise, the Internal Voltage Reference will be enabled,
independent of sleep mode. Refer to
figure the Analog Comparator.
If the Brown-out Detector is not needed in the application, this module should be turned off. If the
Brown-out Detector is enabled by the BODLEVEL fuses, it will be enabled in all sleep modes,
and hence, always consume power. In the deeper sleep modes, this will contribute significantly
to the total current consumption. See
able” on page 31
The Internal Voltage Reference will be enabled when needed by the Brown-out Detection, the
Analog Comparator or the ADC. If these modules are disabled as described in the sections
above, the internal voltage reference will be disabled and it will not be consuming power. When
turned on again, the user must allow the reference to start up before the output is used. If the
reference is kept on in sleep mode, the output can be used immediately. Refer to
age Reference” on page 38
If the Watchdog Timer is not needed in the application, this module should be turned off. If the
Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence, always consume
power. In the deeper sleep modes, this will contribute significantly to the total current consump-
tion. Refer to
“Interrupts” on page 45
for details on how to configure the Brown-out Detector.
for details on the start-up time.
for examples.
“Analog Comparator” on page 79
“Brown-out Detection” on page 37
for details on how to configure the Watchdog Timer.
“Analog to Digital Converter” on page 82
for details on how to con-
and
“Software BOD Dis-
“Supply Current
8126E–AVR–07/10
“Internal Volt-
for

Related parts for ATtiny13A