ATtiny13A Atmel Corporation, ATtiny13A Datasheet - Page 87

no-image

ATtiny13A

Manufacturer Part Number
ATtiny13A
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATtiny13A

Flash (kbytes)
1 Kbytes
Pin Count
8
Max. Operating Frequency
20 MHz
Cpu
8-bit AVR
Hardware Qtouch Acquisition
No
Max I/o Pins
6
Ext Interrupts
6
Usb Speed
No
Usb Interface
No
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
4
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
0.06
Eeprom (bytes)
64
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
Yes
Temp. Range (deg C)
-40 to 125
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
1
Output Compare Channels
2
Pwm Channels
2
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATtiny13A-MMU
Manufacturer:
DP
Quantity:
34 000
Part Number:
ATtiny13A-MMU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny13A-MMUR
Manufacturer:
TI
Quantity:
4 430
Company:
Part Number:
ATtiny13A-PU
Quantity:
15 000
Part Number:
ATtiny13A-SFR
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny13A-SHR
Manufacturer:
Laird Technologies Inc
Quantity:
400 000
Part Number:
ATtiny13A-SN
Manufacturer:
MICROCHIP
Quantity:
3 000
Part Number:
ATtiny13A-SS7R
Manufacturer:
Atmel
Quantity:
8 052
Part Number:
ATtiny13A-SSU
Manufacturer:
ATMEL
Quantity:
500
Part Number:
ATtiny13A-SSU
Manufacturer:
ST
0
Part Number:
ATtiny13A-SSU
Manufacturer:
ATMEL可看货
Quantity:
20 000
Company:
Part Number:
ATtiny13A-SSU
Quantity:
7 450
Company:
Part Number:
ATtiny13A-SSU
Quantity:
16 000
Part Number:
ATtiny13A-SSUR
Manufacturer:
ATMEL
Quantity:
8 000
Part Number:
ATtiny13A-SSUR
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Company:
Part Number:
ATtiny13A-SSUR
Quantity:
3 900
Part Number:
ATtiny13A-SU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
14.6
14.6.1
8126E–AVR–07/10
Changing Channel or Reference Selection
ADC Input Channels
For a summary of conversion times, see
Table 14-1.
The MUXn and REFS[1:0] bits in the ADMUX Register are single buffered through a temporary
register to which the CPU has random access. This ensures that the channels and reference
selection only takes place at a safe point during the conversion. The channel and reference
selection is continuously updated until a conversion is started. Once the conversion starts, the
channel and reference selection is locked to ensure a sufficient sampling time for the ADC. Con-
tinuous updating resumes in the last ADC clock cycle before the conversion completes (ADIF in
ADCSRA is set). Note that the conversion starts on the following rising ADC clock edge after
ADSC is written. The user is thus advised not to write new channel or reference selection values
to ADMUX until one ADC clock cycle after ADSC is written.
If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special
care must be taken when updating the ADMUX Register, in order to control which conversion
will be affected by the new settings.
If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the
ADMUX Register is changed in this period, the user cannot tell if the next conversion is based
on the old or the new settings. ADMUX can be safely updated in the following ways:
When updating ADMUX in one of these conditions, the new settings will affect the next ADC
conversion.
When changing channel selections, the user should observe the following guidelines to ensure
that the correct channel is selected:
In Single Conversion mode, always select the channel before starting the conversion. The chan-
nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the
simplest method is to wait for the conversion to complete before changing the channel selection.
In Free Running mode, always select the channel before starting the first conversion. The chan-
nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the
simplest method is to wait for the first conversion to complete, and then change the channel
selection. Since the next conversion has already started automatically, the next result will reflect
the previous channel selection. Subsequent conversions will reflect the new channel selection.
Condition
First conversion
Normal conversions
Auto Triggered conversions
• When ADATE or ADEN is cleared.
• During conversion, minimum one ADC clock cycle after the trigger event.
• After a conversion, before the Interrupt Flag used as trigger source is cleared.
ADC Conversion Time
Sample & Hold (Cycles
from Start of Conversion)
Table
14-1.
13.5
1.5
2
Conversion Time (Cycles)
13.5
25
13
87

Related parts for ATtiny13A