ATtiny13A Atmel Corporation, ATtiny13A Datasheet - Page 89

no-image

ATtiny13A

Manufacturer Part Number
ATtiny13A
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATtiny13A

Flash (kbytes)
1 Kbytes
Pin Count
8
Max. Operating Frequency
20 MHz
Cpu
8-bit AVR
Hardware Qtouch Acquisition
No
Max I/o Pins
6
Ext Interrupts
6
Usb Speed
No
Usb Interface
No
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
4
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
0.06
Eeprom (bytes)
64
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
Yes
Temp. Range (deg C)
-40 to 125
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
1
Output Compare Channels
2
Pwm Channels
2
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATtiny13A-MMU
Manufacturer:
DP
Quantity:
34 000
Part Number:
ATtiny13A-MMU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny13A-MMUR
Manufacturer:
TI
Quantity:
4 430
Company:
Part Number:
ATtiny13A-PU
Quantity:
15 000
Part Number:
ATtiny13A-SFR
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny13A-SHR
Manufacturer:
Laird Technologies Inc
Quantity:
400 000
Part Number:
ATtiny13A-SN
Manufacturer:
MICROCHIP
Quantity:
3 000
Part Number:
ATtiny13A-SS7R
Manufacturer:
Atmel
Quantity:
8 052
Part Number:
ATtiny13A-SSU
Manufacturer:
ATMEL
Quantity:
500
Part Number:
ATtiny13A-SSU
Manufacturer:
ST
0
Part Number:
ATtiny13A-SSU
Manufacturer:
ATMEL可看货
Quantity:
20 000
Company:
Part Number:
ATtiny13A-SSU
Quantity:
7 450
Company:
Part Number:
ATtiny13A-SSU
Quantity:
16 000
Part Number:
ATtiny13A-SSUR
Manufacturer:
ATMEL
Quantity:
8 000
Part Number:
ATtiny13A-SSUR
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Company:
Part Number:
ATtiny13A-SSUR
Quantity:
3 900
Part Number:
ATtiny13A-SU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
14.9
14.10 ADC Accuracy Definitions
8126E–AVR–07/10
Analog Noise Canceling Techniques
The ADC is optimized for analog signals with an output impedance of approximately 10 kΩ or
less. If such a source is used, the sampling time will be negligible. If a source with higher imped-
ance is used, the sampling time will depend on how long time the source needs to charge the
S/H capacitor, with can vary widely. The user is recommended to only use low impedant sources
with slowly varying signals, since this minimizes the required charge transfer to the S/H
capacitor.
Signal components higher than the Nyquist frequency (f
distortion from unpredictable signal convolution. The user is advised to remove high frequency
components with a low-pass filter before applying the signals as inputs to the ADC.
Digital circuitry inside and outside the device generates EMI which might affect the accuracy of
analog measurements. When conversion accuracy is critical, the noise level can be reduced by
applying the following techniques:
Where high ADC accuracy is required it is recommended to use ADC Noise Reduction Mode, as
described in
is above 1 MHz. A good system design with properly placed, external bypass capacitors does
reduce the need for using ADC Noise Reduction Mode
An n-bit single-ended ADC converts a voltage linearly between GND and V
(LSBs). The lowest code is read as 0, and the highest code is read as 2
Several parameters describe the deviation from the ideal behavior:
• Keep analog signal paths as short as possible.
• Make sure analog tracks run over the analog ground plane.
• Keep analog tracks well away from high-speed switching digital tracks.
• If any port pin is used as a digital output, it mustn’t switch while a conversion is in progress.
• Place bypass capacitors as close to V
Section 14.7 on page
88. This is especially the case when system clock frequency
CC
and GND pins as possible.
ADC
/2) should not be present to avoid
n
-1.
REF
in 2
n
steps
89

Related parts for ATtiny13A