ISL94200IRZ Intersil, ISL94200IRZ Datasheet - Page 3

IC MULTI LI-ION OC PROT 24-QFN

ISL94200IRZ

Manufacturer Part Number
ISL94200IRZ
Description
IC MULTI LI-ION OC PROT 24-QFN
Manufacturer
Intersil
Datasheet

Specifications of ISL94200IRZ

Function
Over/Under Voltage Protection
Battery Type
Lithium-Ion (Li-Ion)
Voltage - Supply
5 V ~ 10 V
Operating Temperature
-40°C ~ 85°C
Mounting Type
Surface Mount
Package / Case
24-VFQFN Exposed Pad
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ISL94200IRZ
Manufacturer:
Intersil
Quantity:
20
Pin Descriptions
SYMBOL
VC7/VCC
DSENSE
CSENSE
TEMP3V
VCELLN
DSREF
TEMPI
VMON
WKUP
DFET
CFET
RGO
RGC
SDA
VSS
SCL
AO
Battery cell 7 voltage input/VCC supply. This pin is used to monitor the voltage of this battery cell externally at pin AO. This pin also
provides the operating voltage for the IC circuitry.
Battery cell N voltage input. This pin is used to monitor the voltage of this battery cell externally at pin AO. VCELLN connects to the
positive terminal of CELLN and the negative terminal of CELLN + 1.
Ground. This pin connects to the most negative terminal in the battery string.
Discharge current sense reference. This input provides a separate reference point for the charge and discharge current monitoring
circuits. WIth a separate reference connection, it is possible to minimize errors that result from voltage drops on the ground lead when
the load is drawing large currents. If a separate reference is not necessary, connect this pin to VSS.
Discharge current sense monitor. This input monitors the discharge current by monitoring a voltage. It can monitor the voltage
across a sense resistor, or the voltage across the DFET, or by using a FET with a current sense pin. The voltage on this pin is measured
with reference to DSREF.
Charge current sense monitor. This input monitors the charge current by monitoring a voltage. It can monitor the voltage across a
sense resistor, or the voltage across the CFET, or by using a FET with a current sense pin. The voltage on this pin is measured with
reference to VSS.
Discharge FET control. The ISL94200 controls the gate of a discharge FET through this pin. The power FET is a
N-Channel device. The FET is turned on only by the microcontroller. The FET can be turned off by the microcontroller, but the
ISL94200 also turns off the FET in the event of an overcurrent or short circuit condition. If the microcontroller detects an undervoltage
condition on any of the battery cells, it can turn off the discharge FET by controlling this output with a control bit.
Charge FET control. The ISL94200 controls the gate of a charge FET through this pin. The power FET is a N-Channel device. The
FET is turned on only by the microcontroller. The FET can be turned off by the microcontroller, but the ISL94200 also turns off the FET
in the event of an overcurrent condition. If the microcontroller detects an overvoltage condition on any of the battery cells, it can turn
off the FET by controlling this output with a control bit.
Discharge load monitoring. In the event of an overcurrent or short circuit condition, the microcontroller can enable an internal resistor
that connects between the VMON pin and VSS. When the FETs open because of an overcurrent or short circuit condition and the load
remains, the voltage at VMON will be near the VCC voltage. When the load is released, the voltage at VMON drops below a threshold
indicating that the overcurrent or short circuit condition is resolved. At this point, the LDFAIL flag is cleared and operation can resume.
Analog multiplexer output. The analog output pin is used by an external microcontroller to monitor the cell voltages and temperature
sensor voltages. The microcontroller selects the specific voltage being applied to the output by writing to a control register.
Temperature monitor output control. This pin outputs a voltage to be used in a divider that consists of a fixed resistor and a
thermistor. The thermistor is located in close proximity to the cells. The TEMP3V output is connected internally to the RGO voltage
through a PMOS switch only during a measurement of the temperature, otherwise the TEMP3V output is off. The TEMP3V output can
be turned on continuously with a special control bit.
Microcontroller wake up control. The TEMP3V pin is also turned on when any of the DSC, DOC, or COC bits are set. This can be used
to wake up a sleeping microcontroller to respond to overcurrent conditions with its own control mechanism.
Temperature monitor input. This pin inputs the voltage across a thermistor to determine the temperature of the cells. When this input
drops below TEMP3V/13, an external over-temperature condition exists. The TEMPI voltage is also fed to the AO output pin through
an analog multiplexer so the temperature of the cells can be monitored by the microcontroller.
Regulated output voltage. This pin connects to the emitter of an external NPN transistor and works in conjunction with the RGC pin
to provides a regulated 3.3V. The voltage at this pin provides feedback for the regulator and power for many of the ISL94200 internal
circuits as well as providing the 3.3V output voltage for the microcontroller and other external circuits.
Regulated output control. This pin connects to the base of an external NPN transistor and works in conjunction with the RGO pin to
provide a regulated 3.3V. The RGC output provides the control signal for the external transistor to provide the 3.3V regulated voltage
on the RGO pin.
Wake up Voltage. This input wakes up the part when the voltage crosses a turn-on threshold (wake up is edge triggered). The
condition of the pin is reflected in the WKUP bit (The WKUP bit is level sensitive.)
WKPOL bit = ”1”: the device wakes up on the rising edge of the WKUP pin. Also, the WKUP bit is HIGH only when the WKUP pin
voltage > threshold.
WKPOL bit = ”0”, the device wakes up on the falling edge of the WKUP pin. Also, the WKUP bit is HIGH only when the WKUP pin
voltage < threshold.
Serial Data. This is the bidirectional data line for an I
Serial Clock. This is the clock input for an I
3
2
C communication link.
ISL94200
2
C interface.
DESCRIPTION
July 3, 2008
FN6718.0

Related parts for ISL94200IRZ