ATMEGA16M1-AU Atmel, ATMEGA16M1-AU Datasheet - Page 50

IC MCU AVR 16K FLASH 32TQFP

ATMEGA16M1-AU

Manufacturer Part Number
ATMEGA16M1-AU
Description
IC MCU AVR 16K FLASH 32TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA16M1-AU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
CAN, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 11x10b; D/A 1x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
32-TQFP, 32-VQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Number Of I /o
-

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA16M1-AU
Manufacturer:
Atmel
Quantity:
10 000
10.5
10.5.1
10.5.2
50
Register Description
ATmega16M1/32M1/64M1
MCUSR – MCU Status Register
WDTCSR – Watchdog Timer Control Register
The MCU Status Register provides information on which reset source caused an MCU reset.
• Bit 3 – WDRF: Watchdog Reset Flag
This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.
• Bit 2 – BORF: Brown-out Reset Flag
This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.
• Bit 1 – EXTRF: External Reset Flag
This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.
• Bit 0 – PORF: Power-on Reset Flag
This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.
To make use of the Reset flags to identify a reset condition, the user should read and then reset
the MCUSR as early as possible in the program. If the register is cleared before another reset
occurs, the source of the reset can be found by examining the reset flags.
• Bit 7 - WDIF: Watchdog Interrupt Flag
This bit is set when a time-out occurs in the Watchdog Timer and the Watchdog Timer is config-
ured for interrupt. WDIF is cleared by hardware when executing the corresponding interrupt
handling vector. Alternatively, WDIF is cleared by writing a logic one to the flag. When the I-bit in
SREG and WDIE are set, the Watchdog Time-out Interrupt is executed.
• Bit 6 - WDIE: Watchdog Interrupt Enable
When this bit is written to one and the I-bit in the Status Register is set, the Watchdog Interrupt is
enabled. If WDE is cleared in combination with this setting, the Watchdog Timer is in Interrupt
Mode, and the corresponding interrupt is executed if time-out in the Watchdog Timer occurs.
If WDE is set, the Watchdog Timer is in Interrupt and System Reset Mode. The first time-out in
the Watchdog Timer will set WDIF. Executing the corresponding interrupt vector will clear WDIE
and WDIF automatically by hardware (the Watchdog goes to System Reset Mode). This is use-
ful for keeping the Watchdog Timer security while using the interrupt. To stay in Interrupt and
Bit
Read/Write
Initial Value
Bit
Read/Write
Initial Value
WDIF
R/W
7
0
R
7
0
WDIE
R/W
6
0
R
6
0
WDP3
R/W
5
0
R
5
0
WDCE
R/W
4
0
R
4
0
WDE
WDRF
R/W
R/W
X
3
3
WDP2
R/W
BORF
R/W
2
0
2
See Bit Description
WDP1
R/W
EXTRF
R/W
1
0
1
WDP0
R/W
PORF
0
0
R/W
0
8209D–AVR–11/10
WDTCSR
MCUSR

Related parts for ATMEGA16M1-AU