ATMEGA128RFA1-ZU Atmel, ATMEGA128RFA1-ZU Datasheet - Page 278

IC AVR MCU 2.4GHZ XCEIVER 64QFN

ATMEGA128RFA1-ZU

Manufacturer Part Number
ATMEGA128RFA1-ZU
Description
IC AVR MCU 2.4GHZ XCEIVER 64QFN
Manufacturer
Atmel
Series
ATMEGAr

Specifications of ATMEGA128RFA1-ZU

Frequency
2.4GHz
Data Rate - Maximum
2Mbps
Modulation Or Protocol
802.15.4 Zigbee
Applications
General Purpose
Power - Output
3.5dBm
Sensitivity
-100dBm
Voltage - Supply
1.8 V ~ 3.6 V
Current - Receiving
12.5mA
Current - Transmitting
14.5mA
Data Interface
PCB, Surface Mount
Memory Size
128kB Flash, 4kB EEPROM, 16kB RAM
Antenna Connector
PCB, Surface Mount
Operating Temperature
-40°C ~ 85°C
Package / Case
64-VFQFN, Exposed Pad
Rf Ic Case Style
QFN
No. Of Pins
64
Supply Voltage Range
1.8V To 3.6V
Operating Temperature Range
-40°C To +85°C
Svhc
No SVHC (15-Dec-2010)
Rohs Compliant
Yes
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Program Memory Type
Flash
Program Memory Size
128 KB
Data Ram Size
16 KB
Interface Type
JTAG
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
38
Number Of Timers
6
Operating Supply Voltage
1.8 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVR128RFA1-EK1
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128RFA1-ZU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA128RFA1-ZUR
Manufacturer:
ON
Quantity:
56 000
Addressing the
Flash During Self-
Programming
278
ATmega128
or if no SPM instruction is executed within four clock cycles. The CPU is halted during the entire
page write operation if the NRWW section is addressed.
• Bit 0 – SPMEN: Store Program Memory Enable
This bit enables the SPM instruction for the next four clock cycles. If written to one together with
either RWWSRE, BLBSET, PGWRT’ or PGERS, the following SPM instruction will have a spe-
cial meaning, see description above. If only SPMEN is written, the following SPM instruction will
store the value in R1:R0 in the temporary page buffer addressed by the Z-pointer. The LSB of
the Z-pointer is ignored. The SPMEN bit will auto-clear upon completion of an SPM instruction,
or if no SPM instruction is executed within four clock cycles. During page erase and page write,
the SPMEN bit remains high until the operation is completed.
Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower
five bits will have no effect.
The Z-pointer together with RAMPZ are used to address the SPM commands. For details on
how to use the RAMPZ, see “RAM Page Z Select Register – RAMPZ” on page 13.
Since the Flash is organized in pages (see
treated as having two different sections. One section, consisting of the least significant bits, is
addressing the words within a page, while the most significant bits are addressing the pages.
This is shown in
independently. Therefore it is of major importance that the Boot Loader software addresses the
same page in both the page erase and page write operation. Once a programming operation is
initiated, the address is latched and the Z-pointer/RAMPZ can be used for other operations.
The only SPM operation that does not use the Z-pointer/RAMPZ is setting the Boot Loader Lock
bits. The content of the Z-pointer/RAMPZ is ignored and will have no effect on the operation.
The (E)LPM instruction does also use the Z-pointer/RAMPZ to store the address. Since this
instruction addresses the Flash byte by byte, also the LSB (bit Z0) of the Z-pointer is used.
Bit
ZH (R31)
ZL (R30)
Z15
15
Z7
7
Figure
Z14
134. Note that the page erase and page write operations are addressed
14
Z6
6
Z13
13
Z5
5
Z12
12
Z4
4
Table 123 on page
Z11
11
Z3
3
Z10
10
Z2
2
291), the program counter can be
Z9
Z1
9
1
Z8
Z0
8
0
2467V–AVR–02/11

Related parts for ATMEGA128RFA1-ZU