DSPIC30F5015-20I/PT Microchip Technology, DSPIC30F5015-20I/PT Datasheet - Page 17

Digital Signal Processor

DSPIC30F5015-20I/PT

Manufacturer Part Number
DSPIC30F5015-20I/PT
Description
Digital Signal Processor
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F5015-20I/PT

Core Processor
dsPIC
Core Size
16-Bit
Speed
20 MIPS
Connectivity
CAN, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number Of I /o
52
Program Memory Size
66KB (22K x 24)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 16x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TFQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
AC30F008 - MODULE SKT FOR DSPIC30F 64TQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant
Other names
DSPIC30F501520IPT

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F5015-20I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
2.0
This
dsPIC30F5015/5016 CPU and peripheral function. For
a complete description of this functionality, please refer
to
(DS70046).
2.1
The core has a 24-bit instruction word. The Program
Counter (PC) is 23 bits wide with the Least Significant
bit (LSb) always clear (see Section 3.1 “Program
Address Space”), and the Most Significant bit (MSb)
is ignored during normal program execution, except for
certain specialized instructions. Thus, the PC can
address up to 4M instruction words of user program
space. An instruction prefetch mechanism is used to
help maintain throughput. Program loop constructs,
free from loop count management overhead, are
supported using the DO and REPEAT instructions, both
of which are interruptible at any point.
The working register array consists of 16x16-bit
registers, each of which can act as data, address or
offset registers. One working register (W15) operates
as a software Stack Pointer for interrupts and calls.
The data space is 64 Kbytes (32K words) and is split
into two blocks, referred to as X and Y data memory.
Each block has its own independent Address
Generation Unit (AGU). Most instructions operate
solely through the X memory AGU, which provides the
appearance of a single unified data space. The
Multiply-Accumulate (MAC) class of dual source DSP
instructions operate through both the X and Y AGUs,
splitting the data address space into two parts (see
Section 3.2 “Data Address Space”). The X and Y
data space boundary is device specific and cannot be
altered by the user. Each data word consists of 2 bytes,
and most instructions can address data either as words
or bytes.
© 2008 Microchip Technology Inc.
Note:
the “dsPIC30F
document
CPU ARCHITECTURE
OVERVIEW
Core Overview
This data sheet summarizes features of
this group of dsPIC30F devices and is not
intended to be a complete reference
source. For more information on the CPU,
peripherals, register descriptions and
general device functionality, refer to the
“dsPIC30F Family Reference Manual”
(DS70046). For more information on the
device instruction set and programming,
refer to the “dsPIC30F/33F Programmer’s
Reference Manual” (DS70157).
provides
Family
a
Reference
summary
Manual”
of
the
There are two methods of accessing data stored in
program memory:
• The upper 32 Kbytes of data space memory can be
• Linear indirect access of 32K word pages within
Overhead-free circular buffers (Modulo Addressing)
are supported in both X and Y address spaces. This is
primarily intended to remove the loop overhead for
DSP algorithms.
The X AGU also supports Bit-Reversed Addressing on
destination effective addresses, to greatly simplify input
or output data reordering for radix-2 FFT algorithms.
Refer to Section 4.0 “Address Generator Units” for
details on Modulo and Bit-Reversed Addressing.
The core supports Inherent (no operand), Relative,
Literal, Memory Direct, Register Direct, Register
Indirect, Register Offset and Literal Offset Addressing
modes. Instructions are associated with predefined
addressing modes, depending upon their functional
requirements.
For most instructions, the core is capable of executing
a data (or program data) memory read, a working
register (data) read, a data memory write and a
program (instruction) memory read per instruction
cycle. As a result, 3-operand instructions are
supported, allowing C = A + B operations to be
executed in a single cycle.
A DSP engine has been included to significantly
enhance the core arithmetic capability and throughput.
It features a high-speed 17-bit by 17-bit multiplier, a
40-bit ALU, two 40-bit saturating accumulators and a
40-bit
accumulator or any working register can be shifted up
to 16 bits right or 16 bits left in a single cycle. The DSP
instructions
instructions and have been designed for optimal
real-time performance. The MAC class of instructions
can concurrently fetch two data operands from mem-
ory, while multiplying two W registers. To enable this
concurrent fetching of data operands, the data space
has been split for these instructions and linear for all
others. This has been achieved in a transparent and
flexible manner, by dedicating certain working registers
to each address space for the MAC
instructions.
mapped into the lower half (user space) of program
space at any 16K program word boundary, defined
by the 8-bit Program Space Visibility Page
(PSVPAG) register. This lets any instruction access
program space as if it were data space, with a limi-
tation that the access requires an additional cycle.
Moreover, only the lower 16 bits of each instruction
word can be accessed using this method.
program space is also possible using any working
register, via table read and write instructions.
Table read and write instructions can be used to
access all 24 bits of an instruction word.
dsPIC30F5015/5016
bidirectional
operate
barrel
seamlessly
shifter.
DS70149D-page 17
with
Data
all
class of
in
other
the

Related parts for DSPIC30F5015-20I/PT