DSPIC33FJ32GP204-H/ML Microchip Technology, DSPIC33FJ32GP204-H/ML Datasheet - Page 187

16-bit DSC, 44LD,32KB Flash,40 MIPS,nanoWatt 44 QFN 8x8x0.9mm TUBE

DSPIC33FJ32GP204-H/ML

Manufacturer Part Number
DSPIC33FJ32GP204-H/ML
Description
16-bit DSC, 44LD,32KB Flash,40 MIPS,nanoWatt 44 QFN 8x8x0.9mm TUBE
Manufacturer
Microchip Technology
Series
dsPIC™ 33Fr
Datasheet

Specifications of DSPIC33FJ32GP204-H/ML

Core Processor
dsPIC
Core Size
16-Bit
Speed
40 MIPs
Connectivity
I²C, IrDA, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
35
Program Memory Size
32KB (32K x 8)
Program Memory Type
FLASH
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
3 V ~ 3.6 V
Data Converters
A/D 13x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 140°C
Package / Case
44-VQFN Exposed Pad
Processor Series
dsPIC33F
Core
dsPIC
Data Bus Width
16 bit
Interface Type
SPI, I2C, UART, JTAG
Number Of Programmable I/os
35
Operating Supply Voltage
3.3 V
Maximum Operating Temperature
+ 140 C
Mounting Style
SMD/SMT
Development Tools By Supplier
MPLAB IDE Software
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 13 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
19.4
For
dsPIC33FJ16GP304 devices, the WDT is driven by the
LPRC oscillator. When the WDT is enabled, the clock
source is also enabled.
19.4.1
The nominal WDT clock source from LPRC is 32 kHz.
This feeds a prescaler than can be configured for either
5-bit (divide-by-32) or 7-bit (divide-by-128) operation.
The prescaler is set by the WDTPRE Configuration bit.
With a 32 kHz input, the prescaler yields a nominal
WDT time-out period (T
4 ms in 7-bit mode.
A variable postscaler divides down the WDT prescaler
output and allows for a wide range of time-out periods.
The postscaler is controlled by the WDTPOST<3:0>
Configuration bits (FWDT<3:0>), which allow the
selection of 16 settings, from 1:1 to 1:32,768. Using the
prescaler and postscaler, time-out periods ranging from
1 ms to 131 seconds can be achieved.
The WDT, prescaler and postscaler are reset:
• On any device Reset
• On the completion of a clock switch, whether
• When a PWRSAV instruction is executed
• When the device exits Sleep or Idle mode to
• By a CLRWDT instruction during normal execution
FIGURE 19-2:
© 2011 Microchip Technology Inc.
All Device Resets
Transition to New Clock Source
Exit Sleep or Idle Mode
PWRSAV Instruction
CLRWDT Instruction
SWDTEN
FWDTEN
LPRC Clock
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304
invoked by software (i.e., setting the OSWEN bit
after changing the NOSC bits) or by hardware
(i.e., Fail-Safe Clock Monitor)
(i.e., Sleep or Idle mode is entered)
resume normal operation
Note:
Watchdog Timer (WDT)
PRESCALER/POSTSCALER
The CLRWDT and PWRSAV instructions
clear the prescaler and postscaler counts
when executed.
dsPIC33FJ32GP202/204
WINDIS
WDT BLOCK DIAGRAM
WDT
) of 1 ms in 5-bit mode, or
(divide by N1)
WDTPRE
Prescaler
RS
WDT Window Select
and
Watchdog Timer
RS
19.4.2
If the WDT is enabled, it will continue to run during
Sleep or Idle modes. When the WDT time-out occurs,
the device will wake the device and code execution will
continue from where the PWRSAV instruction was
executed. The corresponding SLEEP or IDLE bits
(RCON<3:2>) will need to be cleared in software after
the device wakes up.
19.4.3
The WDT is enabled or disabled by the FWDTEN
Configuration bit in the FWDT Configuration register.
When the FWDTEN Configuration bit is set, the WDT is
always enabled.
The WDT flag bit, WDTO (RCON<4>), is not automatically
cleared following a WDT time-out. To detect subsequent
WDT events, the flag must be cleared in software.
The WDT can be optionally controlled in software when
the FWDTEN Configuration bit has been programmed
to ‘0’. The WDT is enabled in software by setting the
SWDTEN control bit (RCON<5>). The SWDTEN
control bit is cleared on any device Reset. The software
WDT option allows the user application to enable the
WDT for critical code segments and disable the WDT
during non-critical segments for maximum power
savings.
WDTPOST<3:0>
(divide by N2)
Note:
Postscaler
CLRWDT Instruction
window can be determined by using a timer.
SLEEP AND IDLE MODES
ENABLING WDT
If the WINDIS bit (FWDT<6>) is cleared,
the CLRWDT instruction should be executed
by the application software only during the
last 1/4 of the WDT period. This CLRWDT
If a CLRWDT instruction is executed before
this window, a WDT Reset occurs.
Sleep/Idle
1
0
DS70290G-page 187
WDT
Wake-up
WDT
Reset

Related parts for DSPIC33FJ32GP204-H/ML