GRM1885C1H101J Murata, GRM1885C1H101J Datasheet - Page 159

GRM1885C1H101J

Manufacturer Part Number
GRM1885C1H101J
Description
Manufacturer
Murata
Datasheet

Specifications of GRM1885C1H101J

Capacitance
100pF
Tolerance (+ Or -)
5%
Voltage
50VDC
Temp Coeff (dielectric)
C0G
Operating Temp Range
-55C to 125C
Mounting Style
Surface Mount
Package / Case
0603
Construction
SMT Chip
Case Style
Ceramic Chip
Failure Rate
Not Required
Wire Form
Not Required
Product Length (mm)
1.6mm
Product Depth (mm)
0.8mm
Product Height (mm)
0.8mm
Product Diameter (mm)
Not Requiredmm
Dc
07+
Lead Free Status / Rohs Status
Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
GRM1885C1H101JA01D
Manufacturer:
MURATA
Quantity:
640 000
Part Number:
GRM1885C1H101JA01D
Manufacturer:
MURATA
Quantity:
208 000
Part Number:
GRM1885C1H101JA01J
Manufacturer:
MURATA
Quantity:
170 000
!Note
• This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it’s specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
sales representatives or product engineers before ordering.
!Note
7. Coating
1. A crack may be caused in the capacitor due to the stress
8. Die Bonding/Wire Bonding (GMA or GMD Series)
1. Die Bonding of Capacitors
Notice
of the thermal contraction of the resin during curing
process.
The stress is affected by the amount of resin and curing
contraction.
Select a resin with small curing contraction.
The difference in the thermal expansion coefficient
between a coating resin or a molding resin and capacitor
may cause the destruction and deterioration of the
capacitor such as a crack or peeling, and lead to the
deterioration of insulation resistance or dielectric
breakdown.
• Use the following materials for the Brazing alloys:
• Mounting
Continued from the preceding page.
Au-Sn (80/20) 300 to 320 degree C in N
(1) Control the temperature of the substrate so it
(2) Place the brazing alloy on the substrate and place
• Please read rating and !CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
• This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
matches the temperature of the brazing alloy.
the capacitor on the alloy. Hold the capacitor and
gently apply the load. Be sure to complete the
operation within 1 minute.
2
atmosphere
2. Select a resin that is less hygroscopic.
2. Wire Bonding
Select a resin for which the thermal expansion coefficient
is as close to that of capacitor as possible.
A silicone resin can be used as an under-coating to buffer
against the stress.
Using hygroscopic resins under high humidity conditions
may cause the deterioration of the insulation resistance of
a capacitor.
An epoxy resin can be used as a less hygroscopic resin.
• Wire
• Bonding
Gold wire: 25 micro m (0.001 inch) diameter
(1) Thermo compression, ultrasonic ball bonding.
(2) Required stage temperature: 150 to 200 degree C
(3) Required wedge or capillary weight: 0.2N to 0.5N
(4) Bond the capacitor and base substrate or other
devices with gold wire.
Notice
157
C02E.pdf
09.9.18
8

Related parts for GRM1885C1H101J