ATmega32C1 Automotive Atmel Corporation, ATmega32C1 Automotive Datasheet - Page 305

no-image

ATmega32C1 Automotive

Manufacturer Part Number
ATmega32C1 Automotive
Description
Manufacturer
Atmel Corporation

Specifications of ATmega32C1 Automotive

Flash (kbytes)
32 Kbytes
Pin Count
32
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
12
Hardware Qtouch Acquisition
No
Max I/o Pins
27
Ext Interrupts
27
Usb Speed
No
Usb Interface
No
Spi
1
Uart
1
Can
1
Lin
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
11
Adc Resolution (bits)
10
Adc Speed (ksps)
125
Analog Comparators
4
Resistive Touch Screen
No
Dac Channels
1
Dac Resolution (bits)
10
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
2
Eeprom (bytes)
1024
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 150
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
4
Input Capture Channels
1
Pwm Channels
4
32khz Rtc
No
Calibrated Rc Oscillator
Yes
25.8.3
25.8.4
7647G–AVR–09/11
Chip Erase
Programming the Flash
The Chip Erase will erase the Flash and EEPROM
are not reset until the program memory has been completely erased. The Fuse bits are not
changed. A Chip Erase must be performed before the Flash and/or EEPROM are
reprogrammed.
Note:
Load Command “Chip Erase”
The Flash is organized in pages, see
the program data is latched into a page buffer. This allows one page of program data to be
programmed simultaneously. The following procedure describes how to program the entire
Flash memory:
A. Load Command “Write Flash”
B. Load Address Low byte
C. Load Data Low Byte
D. Load Data High Byte
E. Latch Data
1. Set XA1, XA0 to “10”. This enables command loading.
2. Set BS1 to “0”.
3. Set DATA to “1000 0000”. This is the command for Chip Erase.
4. Give XTAL1 a positive pulse. This loads the command.
5. Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.
6. Wait until RDY/BSY goes high before loading a new command.
1. Set XA1, XA0 to “10”. This enables command loading.
2. Set BS1 to “0”.
3. Set DATA to “0001 0000”. This is the command for Write Flash.
4. Give XTAL1 a positive pulse. This loads the command.
1. Set XA1, XA0 to “00”. This enables address loading.
2. Set BS1 to “0”. This selects low address.
3. Set DATA = Address low byte (0x00 - 0xFF).
4. Give XTAL1 a positive pulse. This loads the address low byte.
5. Set XA1, XA0 to “01”. This enables data loading.
6. Set DATA = Data low byte (0x00 - 0xFF).
7. Give XTAL1 a positive pulse. This loads the data byte.
1. Set BS1 to “1”. This selects high data byte.
2. Set XA1, XA0 to “01”. This enables data loading.
3. Set DATA = Data high byte (0x00 - 0xFF).
4. Give XTAL1 a positive pulse. This loads the data byte.
1. Set BS1 to “1”. This selects high data byte.
2. Give PAGEL a positive pulse. This latches the data bytes. (See
waveforms)
1. The EEPRPOM memory is preserved during Chip Erase if the EESAVE Fuse is
programmed.
Atmel ATmega16/32/64/M1/C1
Table 25-12 on page
(1)
memories plus Lock bits. The Lock bits
303. When programming the Flash,
Figure 25-3
for signal
305

Related parts for ATmega32C1 Automotive