ATmega64 Atmel Corporation, ATmega64 Datasheet - Page 298

no-image

ATmega64

Manufacturer Part Number
ATmega64
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega64

Flash (kbytes)
64 Kbytes
Pin Count
64
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
53
Ext Interrupts
8
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Uart
2
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
4
Eeprom (bytes)
2048
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
4
Output Compare Channels
8
Input Capture Channels
2
Pwm Channels
7
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA64
Manufacturer:
ATMEL
Quantity:
9 500
Part Number:
ATmega64-16AC
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64-16AJ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64-16AU
Manufacturer:
ATM
Quantity:
5 400
Part Number:
ATmega64-16AU
Manufacturer:
ATMEL
Quantity:
9 500
Part Number:
ATmega64-16AU
Manufacturer:
Atmel
Quantity:
3 589
Part Number:
ATmega64-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64-16AU
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Company:
Part Number:
ATmega64-16AU
Quantity:
33
Part Number:
ATmega64-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64-16MI
Manufacturer:
ATMEL
Quantity:
260
Part Number:
ATmega640-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega640-16AU
Quantity:
80
Programming the
Flash
2490Q–AVR–06/10
The Flash is organized in pages, see
program data is latched into a page buffer. This allows one page of program data to be pro-
grammed simultaneously. The following procedure describes how to program the entire Flash
memory:
A. Load Command “Write Flash”
1. Set XA1, XA0 to “10”. This enables command loading.
2. Set BS1 to “0”.
3. Set DATA to “0001 0000”. This is the command for Write Flash.
4. Give XTAL1 a positive pulse. This loads the command.
B. Load Address Low byte
1. Set XA1, XA0 to “00”. This enables address loading.
2. Set BS1 to “0”. This selects low address.
3. Set DATA = Address low byte (0x00 - 0xFF).
4. Give XTAL1 a positive pulse. This loads the address low byte.
C. Load Data Low Byte
1. Set XA1, XA0 to “01”. This enables data loading.
2. Set DATA = Data low byte (0x00 - 0xFF).
3. Give XTAL1 a positive pulse. This loads the data byte.
D. Load Data High Byte
1. Set BS1 to “1”. This selects high data byte.
2. Set XA1, XA0 to “01”. This enables data loading.
3. Set DATA = Data high byte (0x00 - 0xFF).
4. Give XTAL1 a positive pulse. This loads the data byte.
E. Latch Data
1. Set BS1 to “1”. This selects high data byte.
2. Give PAGEL a positive pulse. This latches the data bytes. (See
F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded.
While the lower bits in the address are mapped to words within the page, the higher bits address
the pages within the Flash. This is illustrated in
eight bits are required to address words in the page (pagesize < 256), the most significant bit(s)
in the address low byte are used to address the page when performing a Page Write.
G. Load Address High byte
1. Set XA1, XA0 to “00”. This enables address loading.
2. Set BS1 to “1”. This selects high address.
3. Set DATA = Address high byte (0x00 - 0xFF).
4. Give XTAL1 a positive pulse. This loads the address high byte.
H. Program Page
1. Set BS1 = “0”.
2. Give WR a negative pulse. This starts programming of the entire page of data. RDY/BSY-
3. Wait until RDY/BSY goes high. (See
waveforms).
goes low.
Table 123 on page
Figure 140
Figure 139 on page
for signal waveforms.)
296. When programming the Flash, the
Figure 140
299. Note that if less than
ATmega64(L)
for signal
298

Related parts for ATmega64