ATmega64 Atmel Corporation, ATmega64 Datasheet - Page 380

no-image

ATmega64

Manufacturer Part Number
ATmega64
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega64

Flash (kbytes)
64 Kbytes
Pin Count
64
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
53
Ext Interrupts
8
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Uart
2
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
4
Eeprom (bytes)
2048
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
4
Output Compare Channels
8
Input Capture Channels
2
Pwm Channels
7
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA64
Manufacturer:
ATMEL
Quantity:
9 500
Part Number:
ATmega64-16AC
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64-16AJ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64-16AU
Manufacturer:
ATM
Quantity:
5 400
Part Number:
ATmega64-16AU
Manufacturer:
ATMEL
Quantity:
9 500
Part Number:
ATmega64-16AU
Manufacturer:
Atmel
Quantity:
3 589
Part Number:
ATmega64-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64-16AU
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Company:
Part Number:
ATmega64-16AU
Quantity:
33
Part Number:
ATmega64-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64-16MI
Manufacturer:
ATMEL
Quantity:
260
Part Number:
ATmega640-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega640-16AU
Quantity:
80
2490Q–AVR–06/10
4. Stabilizing time needed when changing OSCCAL Register
5. IDCODE masks data from TDI input
6. Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt
After increasing the source clock frequency more than 2% with settings in the OSCCAL reg-
ister, the device may execute some of the subsequent instructions incorrectly.
Problem Fix / Workaround
The behavior follows errata number 3., and the same Fix / Workaround is applicable on this
errata.
The JTAG instruction IDCODE is not working correctly. Data to succeeding devices are
replaced by all-ones during Update-DR.
Problem Fix / Workaround
request.
Reading EEPROM by using the ST or STS command to set the EERE bit in the EECR reg-
ister triggers an unexpected EEPROM interrupt request.
Problem Fix / Workaround
Always use OUT or SBI to set EERE in EECR.
If ATmega64 is the only device in the scan chain, the problem is not visible.
Select the Device ID Register of the ATmega64 by issuing the IDCODE instruction or
by entering the Test-Logic-Reset state of the TAP controller to read out the contents
of its Device ID Register and possibly data from succeeding devices of the scan
chain. Issue the BYPASS instruction to the ATmega64 while reading the Device ID
Registers of preceding devices of the boundary scan chain.
If the Device IDs of all devices in the boundary scan chain must be captured
simultaneously, the ATmega64 must be the first device in the chain.
ATmega64(L)
380

Related parts for ATmega64