ATmega64 Atmel Corporation, ATmega64 Datasheet - Page 51

no-image

ATmega64

Manufacturer Part Number
ATmega64
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega64

Flash (kbytes)
64 Kbytes
Pin Count
64
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
53
Ext Interrupts
8
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Uart
2
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
4
Eeprom (bytes)
2048
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
4
Output Compare Channels
8
Input Capture Channels
2
Pwm Channels
7
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA64
Manufacturer:
ATMEL
Quantity:
9 500
Part Number:
ATmega64-16AC
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64-16AJ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64-16AU
Manufacturer:
ATM
Quantity:
5 400
Part Number:
ATmega64-16AU
Manufacturer:
ATMEL
Quantity:
9 500
Part Number:
ATmega64-16AU
Manufacturer:
Atmel
Quantity:
3 589
Part Number:
ATmega64-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64-16AU
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Company:
Part Number:
ATmega64-16AU
Quantity:
33
Part Number:
ATmega64-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64-16MI
Manufacturer:
ATMEL
Quantity:
260
Part Number:
ATmega640-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega640-16AU
Quantity:
80
System Control
and Reset
Resetting the AVR
Reset Sources
2490Q–AVR–06/10
During Reset, all I/O Registers are set to their initial values, and the program starts execution
from the Reset Vector. The instruction placed at the Reset Vector must be a JMP – absolute
jump – instruction to the Reset handling routine. If the program never enables an interrupt
source, the Interrupt Vectors are not used, and regular program code can be placed at these
locations. This is also the case if the Reset Vector is in the Application section while the Interrupt
Vectors are in the Boot section or vice versa. The circuit diagram in
logic.
The I/O ports of the AVR are immediately Reset to their initial state when a reset source goes
active. This does not require any clock source to be running.
After all reset sources have gone inactive, a delay counter is invoked, stretching the Internal
Reset. This allows the power to reach a stable level before normal operation starts. The Time-
out period of the delay counter is defined by the user through the CKSEL Fuses. The different
selections for the delay period are presented in
The ATmega64 has five sources of reset:
Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset
threshold (V
External Reset. The MCU is reset when a low level is present on the RESET pin for longer
than the minimum pulse length.
Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the
Watchdog is enabled.
Brown-out Reset. The MCU is reset when the supply voltage V
Reset threshold (V
JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset Register,
one of the scan chains of the JTAG system. Refer to the section
Boundary-scan” on page 254
Table 19
defines the electrical parameters of the Reset circuitry.
POT
).
BOT
) and the Brown-out Detector is enabled.
for details.
“Clock Sources” on page
CC
“IEEE 1149.1 (JTAG)
Figure 22
is below the Brown-out
ATmega64(L)
38.
shows the Reset
51

Related parts for ATmega64