AD9467 Analog Devices, AD9467 Datasheet - Page 26

no-image

AD9467

Manufacturer Part Number
AD9467
Description
16-Bit, 200 MSPS/250 MSPS Analog-to-Digital Converter
Manufacturer
Analog Devices
Datasheet

Specifications of AD9467

Resolution (bits)
16bit
# Chan
1
Sample Rate
250MSPS
Interface
LVDS,Par
Analog Input Type
Diff-Uni,SE-Uni
Ain Range
(2Vref) p-p,2 V p-p,2.5V p-p
Adc Architecture
Pipelined,Subranging
Pkg Type
CSP

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD9467BCPZ-200
Manufacturer:
VISHAY
Quantity:
20 000
Part Number:
AD9467BCPZ-200
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD9467BCPZ-250
Manufacturer:
AD
Quantity:
1 000
Part Number:
AD9467BCPZ-250
Manufacturer:
ADI
Quantity:
187
Part Number:
AD9467BCPZ-250
Manufacturer:
ADI/亚德诺
Quantity:
20 000
AD9467
SERIAL PORT INTERFACE (SPI)
The AD9467 serial port interface allows the user to configure
the converter for specific functions or operations through a
structured register space provided inside the ADC. This gives
the user added flexibility and customization, depending on the
application. Addresses are accessed via the serial port and can
be written to or read from via the port. Memory is organized
into bytes that can be further divided down into fields, as
detailed in the Memory Map section. Detailed operational
information can be found in the
Interfacing to High Speed ADCs via SPI.
There are three pins that define the SPI: SCLK, SDIO, and CSB
(see Table 11). The SCLK pin is used to synchronize the read
and write data presented to the ADC. The SDIO pin is a dual-
purpose pin that allows data to be sent to and read from the
internal ADC memory map registers. The CSB pin is an active
low control that enables or disables the read and write cycles.
Table 11. Serial Port Pins
Pin
SCLK
SDIO
CSB
The falling edge of the CSB, in conjunction with the rising edge
of the SCLK, determines the start of the framing sequence. During
an instruction phase, a 16-bit instruction is transmitted followed by
one or more data bytes, which is determined by Bit Field W0 and
Bit Field W1. An example of the serial timing and its definitions
can be found in Figure 68 and Table 12. During normal operation,
CSB is used to signal to the device that SPI commands are to be
received and processed. When CSB is brought low, the device
processes SCLK and SDIO to process instructions. Normally,
CSB remains low until the communication cycle is complete.
However, if connected to a slow device, CSB can be brought
high between bytes, allowing older microcontrollers enough
time to transfer data into shift registers. CSB can be stalled
when transferring one, two, or three bytes of data. When W0 and
W1 are set to 11, the device enters streaming mode and continues
to process data, either reading or writing, until CSB is taken
high to end the communication cycle. This allows complete
memory transfers without requiring additional instructions.
Regardless of the mode, if CSB is taken high in the middle of a
byte transfer, the SPI state machine is reset and the device waits
for a new instruction.
Function
Serial clock. The serial shift clock input. SCLK is used to
synchronize serial interface reads and writes.
Serial data input/output. A dual-purpose pin. The typical
role for this pin is an input or output, depending on the
instruction sent and the relative position in the timing
frame.
Chip select bar (active low). This control gates the read
and write cycles.
AN-877
Application Note,
Rev. C | Page 26 of 32
In addition to the operation modes, the SPI port configuration
influences how the AD9467 operates. When operating in 2-wire
mode, it is recommended to use a 1-, 2-, or 3-byte transfer
exclusively. Without an active CSB line, streaming mode can be
entered but not exited.
In addition to word length, the instruction phase determines if
the serial frame is a read or write operation, allowing the serial
port to be used to both program the chip and read the contents
of the on-chip memory. If the instruction is a readback operation,
performing a readback causes the SDIO pin to change from an
input to an output at the appropriate point in the serial frame.
Data can be sent in MSB- or LSB-first mode. MSB-first mode
is the default at power-up and can be changed by adjusting the
configuration register. For more information about this and
other features, see the AN-877 Application Note, Interfacing to
High Speed ADCs via SPI.
HARDWARE INTERFACE
The pins described in Table 11 compose the physical interface
between the programming device of the user and the serial port
of the AD9467. The SCLK and CSB pins function as inputs
when using the SPI. The SDIO pin is bidirectional, functioning as
an input during write phases and as an output during readback.
If multiple SDIO pins share a common connection, care should
be taken to ensure that proper V
same load for each AD9467, Figure 67 shows the number of SDIO
pins that can be connected together and the resulting V
This interface is flexible enough to be controlled by either serial
PROMS or PIC mirocontrollers, providing the user with an
alternative method, other than a full SPI controller, to program
the ADC (see the
1.80
1.79
1.78
1.77
1.76
1.75
1.74
1.73
1.72
0
10
NUMBER OF SDIO PINS CONNECTED TOGETHER
AN-812
20
Figure 67. SDIO Pin Loading
30
Application Note).
40
OH
50
levels are met. Assuming the
60
70
Data Sheet
80
90
OH
100
level.

Related parts for AD9467