PIC18LF25K22-I/SP Microchip Technology, PIC18LF25K22-I/SP Datasheet - Page 296

no-image

PIC18LF25K22-I/SP

Manufacturer Part Number
PIC18LF25K22-I/SP
Description
MCU 8BIT 32KB FLASH 3.6V 28SDIP
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr

Specifications of PIC18LF25K22-I/SP

Program Memory Type
FLASH
Program Memory Size
32KB (16K x 16)
Package / Case
28-DIP (0.300", 7.62mm)
Core Processor
PIC
Core Size
8-Bit
Speed
64MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number Of I /o
24
Eeprom Size
256 x 8
Ram Size
1.5K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 3.6 V
Data Converters
A/D 19x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC18LF
Core
PIC
Data Bus Width
8 bit
Data Ram Size
1536 B
Interface Type
I2C, SPI, EUSART
Maximum Clock Frequency
64 MHz
Number Of Programmable I/os
25
Number Of Timers
7
Operating Supply Voltage
1.8 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164005
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 17 Channel
On-chip Dac
5 bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant
PIC18(L)F2X/4XK22
17.2.2
When the conversion is complete, the ADC module will:
• Clear the GO/DONE bit
• Set the ADIF flag bit
• Update the ADRESH:ADRESL registers with new
17.2.3
The discharge phase is used to initialize the value of
the capacitor array. The array is discharged after every
sample. This feature helps to optimize the unity-gain
amplifier, as the circuit always needs to charge the
capacitor array, rather than charge/discharge based on
previous measure values.
17.2.4
If a conversion must be terminated before completion,
the GO/DONE bit can be cleared by software. The
ADRESH:ADRESL registers will not be updated with
the partially complete Analog-to-Digital conversion
sample. Instead, the ADRESH:ADRESL register pair
will retain the value of the previous conversion.
17.2.5
After the A/D conversion is completed or aborted, a
2 T
be started. After this wait, the currently selected
channel is reconnected to the charge holding capacitor
commencing the next acquisition.
17.2.6
The selection of the automatic acquisition time and A/D
conversion clock is determined in part by the clock
source and frequency while in a power-managed mode.
If the A/D is expected to operate while the device is in
a power-managed mode, the ACQT<2:0> and
ADCS<2:0> bits in ADCON2 should be updated in
accordance with the clock source to be used in that
mode. After entering the mode, an A/D acquisition or
conversion may be started. Once started, the device
should continue to be clocked by the same clock
source until the conversion has been completed.
If desired, the device may be placed into the
corresponding Idle mode during the conversion. If the
device clock frequency is less than 1 MHz, the A/D F
clock source should be selected.
DS41412D-page 296
conversion result
Note:
AD
wait is required before the next acquisition can
COMPLETION OF A CONVERSION
DISCHARGE
TERMINATING A CONVERSION
A device Reset forces all registers to their
Reset state. Thus, the ADC module is
turned off and any pending conversion is
terminated.
DELAY BETWEEN CONVERSIONS
ADC OPERATION IN POWER-
MANAGED MODES
Preliminary
RC
Trigger source is selected using the TRIGSEL bit in
17.2.7
The ADC module can operate during Sleep. This
requires the ADC clock source to be set to the F
option. When the F
ADC waits one additional instruction before starting the
conversion. This allows the SLEEP instruction to be
executed, which can reduce system noise during the
conversion. If the ADC interrupt is enabled, the device
will wake-up from Sleep when the conversion
completes. If the ADC interrupt is disabled, the ADC
module is turned off after the conversion completes,
although the ADON bit remains set.
When the ADC clock source is something other than
F
conversion to be aborted and the ADC module is
turned off, although the ADON bit remains set.
17.2.8
Two Special Event Triggers are available to start an A/D
conversion: CTMU and CCP5. The Special Event
ADCON1.
When TRIGSEL = 0, the CCP5 module is selected as
the Special Event Trigger source. To enable the
Special Event Trigger in the CCP module, set
CCP5M<3:0> = 1011, in the CCP5CON register.
When TRIGSEL = 1, the CTMU module is selected.
The CTMU module requires that the CTTRIG bit in
CTMUCONH is set to enable the Special Event Trigger.
In addition to TRIGSEL bit, the following steps are
required to start an A/D conversion:
• The A/D module must be enabled (ADON = 1)
• The appropriate analog input channel selected
• The minimum acquisition period set one of these
With these conditions met, the trigger sets the GO/DONE
bit and the A/D acquisition starts.
If the A/D module is not enabled (ADON = 0), the
module ignores the Special Event Trigger.
17.2.9
When a peripheral module is not used or inactive, the
module can be disabled by setting the Module Disable
bit in the PMD registers. This will reduce power
consumption to an absolute minimum. Setting the PMD
bits holds the module in Reset and disconnects the
module’s clock source. The Module Disable bit for the
ADC module is ADCMD in the PMD2 Register. See
Section 3.0 “Power-Managed Modes”
information.
RC
ways:
- Timing provided by the user
- Selection made of an appropriate T
, a SLEEP instruction causes the present
ADC OPERATION DURING SLEEP
SPECIAL EVENT TRIGGER
PERIPHERAL MODULE DISABLE
RC
 2010 Microchip Technology Inc.
clock source is selected, the
ACQ
time
for more
RC

Related parts for PIC18LF25K22-I/SP